戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 onal ventilation preceding the initiation of high-frequency oscillatory ventilation.
2 s which enhance lung recruitment, especially high-frequency oscillatory ventilation.
3 l as extracorporeal membrane oxygenation and high-frequency oscillatory ventilation.
4 +/- 10.3 to 34.0 +/- 6.7 cm H2O, p < .05) on high-frequency oscillatory ventilation.
5 tion in acute lung injury when combined with high-frequency oscillatory ventilation.
6 uous distending pressure optimization during high-frequency oscillatory ventilation.
7             The rabbits were ventilated with high-frequency oscillatory ventilation.
8 monitoring right ventricular function during high-frequency oscillatory ventilation.
9 h acute respiratory distress syndrome during high-frequency oscillatory ventilation.
10 Tidal volumes are not uniformly small during high-frequency oscillatory ventilation.
11 s of measuring tidal volume during simulated high-frequency oscillatory ventilation.
12 pable of tracking lung volume changes during high-frequency oscillatory ventilation.
13 es and specific components of a protocol for high-frequency oscillatory ventilation.
14 patients with severe ARDS who are undergoing high-frequency oscillatory ventilation.
15 h group to receive intermittent mandatory or high-frequency oscillatory ventilation.
16 ume in a surfactant-deficient patient during high-frequency oscillatory ventilation.
17 e of CO2 values in pediatric patients during high-frequency oscillatory ventilation.
18  Percutaneous dilational tracheostomy during high-frequency oscillatory ventilation.
19  the percutaneous dilational tracheostomy or high-frequency oscillatory ventilation.
20 ed outcomes for pediatric patients receiving high-frequency oscillatory ventilation.
21 h acute respiratory distress syndrome during high-frequency oscillatory ventilation.
22 f 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation.
23                                              High-frequency oscillatory ventilation+10 and +15 furthe
24                                           At high-frequency oscillatory ventilation+15, 15 patients h
25 ion and was increased until 33+/-3 cm H2O at high-frequency oscillatory ventilation+15.
26 tricular end-diastolic area increase>40%) at high-frequency oscillatory ventilation+15.
27 itude pressure oscillations delivered during high-frequency oscillatory ventilation; 2) to characteri
28 ents were submitted to three 1-hr periods of high-frequency oscillatory ventilation (+5, +10, +15) in
29  with conventional mechanical ventilation or high-frequency oscillatory ventilation+5 periods.
30                       Of infants assigned to high-frequency oscillatory ventilation, 56 percent were
31                                              High-frequency oscillatory ventilation, airway pressure
32  ventilation compared with animals receiving high-frequency oscillatory ventilation alone (253 +/- 16
33                 Although the group receiving high-frequency oscillatory ventilation alone eventually
34 was 75% (nine of 12), 80% (four of five) for high-frequency oscillatory ventilation alone, and 71% (f
35 pid improvement in arterial oxygenation than high-frequency oscillatory ventilation alone, in a pigle
36                                       During high-frequency oscillatory ventilation, an understanding
37                                  The role of high-frequency oscillatory ventilation and airway pressu
38 verse events were similar between coenrolled high-frequency oscillatory ventilation and control patie
39 s treated with high-dose corticosteroids and high-frequency oscillatory ventilation and experienced a
40 infection and severe lung injury, the use of high-frequency oscillatory ventilation and extracorporea
41  the efficacy of rescue therapies, including high-frequency oscillatory ventilation and extracorporea
42 n to detect changes in lung mechanics during high-frequency oscillatory ventilation and has the poten
43                           The combination of high-frequency oscillatory ventilation and partial liqui
44  After lung injury, subjects were changed to high-frequency oscillatory ventilation and stabilized fo
45 aO2) were monitored during the transition to high-frequency oscillatory ventilation and throughout th
46           The animals were then administered high-frequency oscillatory ventilation and ventilated wi
47 ure-volume relationship in infants receiving high-frequency oscillatory ventilation, and 2) to determ
48 o on to airway pressure release ventilation, high-frequency oscillatory ventilation, and computer-bas
49 patient variables affect tidal volume during high-frequency oscillatory ventilation; and b) measure t
50             The efficacy and safety of early high-frequency oscillatory ventilation as compared with
51                                              High-frequency oscillatory ventilation at 24 hrs resulte
52             The animals were ventilated with high-frequency oscillatory ventilation at the same mean
53 ance and functional residual capacity during high-frequency oscillatory ventilation can be used to ad
54 drome, using high mean airway pressure under high-frequency oscillatory ventilation can worsen right
55 als that received 3 mL/kg of perflubron with high-frequency oscillatory ventilation compared with ani
56                                              High-frequency oscillatory ventilation did not improve o
57                                              High-frequency oscillatory ventilation enables the use o
58 ved a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more f
59 ntilation alone, and 71% (five of seven) for high-frequency oscillatory ventilation + extracorporeal
60 rs, prone positioning, inhaled nitric oxide, high-frequency oscillatory ventilation, extracorporeal m
61                 The patient was treated with high-frequency oscillatory ventilation, extracorporeal m
62 ithm-controlled conventional ventilation vs. high-frequency oscillatory ventilation for adults with s
63 ion of current practice regarding the use of high-frequency oscillatory ventilation for pediatric hyp
64 r treatment of DAH after BMT and the role of high-frequency oscillatory ventilation for treatment of
65                         Animals treated with high-frequency oscillatory ventilation had attenuated ox
66                                              High-frequency oscillatory ventilation has been shown to
67                        When initiated early, high-frequency oscillatory ventilation has been shown to
68                                              High-frequency oscillatory ventilation has been used suc
69                           The utilization of high-frequency oscillatory ventilation has dramatically
70 ical benefit of heliox administration during high-frequency oscillatory ventilation has yet to be det
71       Ventilator settings typically used for high-frequency oscillatory ventilation (HFO) in adults p
72 ollow changes in mean airway pressure during high- frequency oscillatory ventilation (HFOV).
73                                              High-frequency oscillatory ventilation (HFOV) and inhale
74                    Review data obtained from high-frequency oscillatory ventilation (HFOV) and mechan
75 chanical lung recruitment techniques such as high-frequency oscillatory ventilation (HFOV) and partia
76                                   The use of high-frequency oscillatory ventilation (HFOV) for acute
77                                   The use of high-frequency oscillatory ventilation (HFOV) has increa
78    Acute lung injury models demonstrate that high-frequency oscillatory ventilation (HFOV) improves l
79 hat heliox would improve gas exchange during high-frequency oscillatory ventilation (HFOV) in a model
80              Outcomes associated with use of high-frequency oscillatory ventilation (HFOV) in childre
81                                              High-frequency oscillatory ventilation (HFOV) is an attr
82                                   RATIONALE: High-frequency oscillatory ventilation (HFOV) is theoret
83                                              High-frequency oscillatory ventilation (HFOV) may reduce
84              Previous trials suggesting that high-frequency oscillatory ventilation (HFOV) reduced mo
85                                              High-frequency oscillatory ventilation (HFOV) using an o
86                              Use of nontidal high-frequency oscillatory ventilation (HFOV) while the
87 onal study involving neonates suggested that high-frequency oscillatory ventilation (HFOV), as compar
88 ecreasing pulmonary vascular resistance with high-frequency oscillatory ventilation (HFOV), we develo
89 ociated lung disease who are ventilated with high-frequency oscillatory ventilation (HFOV).
90 0 breaths/min) and low VT (8 ml/kg), or with high-frequency oscillatory ventilation (HFOV).
91 onal mechanical ventilation (CMV, n = 15) or high-frequency oscillatory ventilation (HFOV, n = 5).
92 onventional mechanical ventilation [CMV] vs. high-frequency oscillatory ventilation [HFOV]) on perflu
93 ommendation is strong against routine use of high-frequency oscillatory ventilation (high confidence
94                     Observational studies of high-frequency oscillatory ventilation in adults with th
95 There was a small but significant benefit of high-frequency oscillatory ventilation in terms of the p
96                We conclude that early use of high-frequency oscillatory ventilation in very preterm i
97 ng the techniques of permissive hypercapnia, high frequency oscillatory ventilation, inhaled nitric o
98                                              High-frequency oscillatory ventilation is both safe and
99  The combination of low-dose perflubron with high-frequency oscillatory ventilation leads to more rap
100 ritical pulmonary status, patients requiring high-frequency oscillatory ventilation may especially be
101 rflubron, the combination of perflubron with high-frequency oscillatory ventilation may permit effect
102  end-expiratory pressure) were randomized to high-frequency oscillatory ventilation (n = 75) or conve
103 ric studies include endotracheal surfactant, high-frequency oscillatory ventilation, noninvasive vent
104 Measured tidal volumes were 23-225 mL during high-frequency oscillatory ventilation of the test lung.
105 lment did not modify the treatment effect of high-frequency oscillatory ventilation on hospital morta
106           The other five animals remained on high-frequency oscillatory ventilation only.
107 ot greater than the improvements seen in the high-frequency oscillatory ventilation-only group.
108                              Rescue therapy (high-frequency oscillatory ventilation or extracorporeal
109 orticosteroids and then randomly assigned to high-frequency oscillatory ventilation or synchronized i
110 ne ventilation, extracorporeal life support, high-frequency oscillatory ventilation, or inhaled nitri
111 n preventive respiratory treatments include: high frequency oscillatory ventilation, permissive hyper
112 elp stratify mortality risk and guide future high-frequency oscillatory ventilation practice.
113    A lung volume recruitment strategy during high-frequency oscillatory ventilation produced improved
114 cal ventilation, notably in patients in whom high-frequency oscillatory ventilation produced less alv
115 euvers, airway pressure release ventilation, high-frequency oscillatory ventilation, prone positionin
116                                              High-frequency oscillatory ventilation relies on the gen
117 with a high-amplitude (18 cm H2O) asymmetric high-frequency oscillatory ventilation square pressure w
118  The relative benefits of strategies such as high frequency oscillatory ventilation, surfactant repla
119 Syndrome Treated Early Trial, which compared high-frequency oscillatory ventilation to conventional v
120          Tidal volume can be measured during high-frequency oscillatory ventilation using a variety o
121 OR, 11.0; 95% CI, 2.26-53.8 for the need for high-frequency oscillatory ventilation vs no respiratory
122 atory support (OR, 7.0; 95% CI, 1.3-37.1 for high-frequency oscillatory ventilation vs. no respirator
123 ion, conventional mechanical ventilation, or high-frequency oscillatory ventilation was continued for
124                                              High-frequency oscillatory ventilation was instituted af
125 determine whether infants treated with early high-frequency oscillatory ventilation were more likely
126  < .02) at 12, 24, and 48 hrs after starting high-frequency oscillatory ventilation were observed.
127                 Infants randomly assigned to high-frequency oscillatory ventilation were successfully
128 al comparing the safety and effectiveness of high-frequency oscillatory ventilation with conventional
129 h acute respiratory distress syndrome during high-frequency oscillatory ventilation with the Sensorme
130               Anesthetized piglets underwent high-frequency oscillatory ventilation, with mean airway
131        Xrs can be accurately measured during high-frequency oscillatory ventilation without interrupt
132 s that infants who were randomly assigned to high-frequency oscillatory ventilation would have superi

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top