戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 tat1 (alpha-tubulin acetyltransferase 1) per higher organism.
2 of how miRNAs function in the development of higher organisms.
3 ction of hydrogen sulfide, which is toxic to higher organisms.
4 ction on DNA in bacteria and in chromatin of higher organisms.
5 peat structures found in the genomes of most higher organisms.
6 onal interaction has yet to be identified in higher organisms.
7 uggest a similar pathway may be conserved in higher organisms.
8 mic sequence, and they define cell status in higher organisms.
9 ted extensively to manipulate the genomes of higher organisms.
10 ughter cells in a process akin to mitosis in higher organisms.
11  control of developmental gene expression in higher organisms.
12  deal with the complex functional demands of higher organisms.
13 or the regulation of phenotypic diversity of higher organisms.
14 cient secretion of all collagen molecules in higher organisms.
15 ids are regulators of body shape and size in higher organisms.
16 nism controlling protein localization in all higher organisms.
17  circuits controlling spatial orientation in higher organisms.
18 minant of tissue size in both Drosophila and higher organisms.
19 imal phyla suggests mechanistic relevance to higher organisms.
20 rm our understanding of germ cell biology in higher organisms.
21 ggests spatial organization of glycolysis in higher organisms.
22 ays previously known to be available only to higher organisms.
23 but significantly less than that observed in higher organisms.
24 functional genomics and network inference in higher organisms.
25 s critical for the proper development of all higher organisms.
26 ein diversity in eukaryotes, particularly in higher organisms.
27  is essential for normal development in many higher organisms.
28  a signaling molecule and cytotoxic agent in higher organisms.
29 icardial-myocardial interactions relevant to higher organisms.
30 m to enhance cellular transport in yeast and higher organisms.
31 enorhabditis elegans, but is not possible in higher organisms.
32 ion dominate the mRNA stability landscape in higher organisms.
33 t, metabolism, and aging in nematodes and in higher organisms.
34 ntrol of gene expression may have evolved in higher organisms.
35 important families of structural proteins in higher organisms.
36 lex gene expression patterns particularly in higher organisms.
37 mpaction within defined chromatin domains in higher organisms.
38 ionally effective mimics of glycoproteins in higher organisms.
39 ure-function relations with P2X receptors of higher organisms.
40 onfer extracellular and nuclear functions in higher organisms.
41 on may serve as a regulatory modification in higher organisms.
42 yotes to their ability to elicit immunity in higher organisms.
43 ogenetic patterns that may have parallels in higher organisms.
44 lutionary conservation of the Gcm cascade in higher organisms.
45 hat distinguish it from the complex of other higher organisms.
46 and the impact mitochondria have on aging in higher organisms.
47 nt can be found in developmental programs in higher organisms.
48 ommunication and other processes specific to higher organisms.
49 erve transmission and the immune response of higher organisms.
50 uggests that they may serve some function in higher organisms.
51  to regulate complex segmental body plans in higher organisms.
52 e RNase P holoenzyme from archaebacteria and higher organisms.
53 uggest a unique regulatory role for eIF3k in higher organisms.
54  of functions appears to be conserved in all higher organisms.
55 nding tissue-level electric field effects in higher organisms.
56 c changes in viruses, bacteria, and genes of higher organisms.
57 eton play an important role in cell shape in higher organisms.
58 ight regulate critical cellular processes in higher organisms.
59 haracteristic of all grasses and perhaps all higher organisms.
60 m for understanding dopaminergic function in higher organisms.
61 l wave formation in the respiratory cilia of higher organisms.
62 ing domains has so far been observed only in higher organisms.
63 er, little is known about PMR1 homologues in higher organisms.
64  molecules that carry out analogous roles in higher organisms.
65 an reveal novel components and mechanisms in higher organisms.
66 stows upon bacteria some of the qualities of higher organisms.
67 tion of other symbiotic associations between higher organisms.
68 ome bacterial cytochromes c(1) but absent in higher organisms.
69 ed to other aspects of aging in yeast and in higher organisms.
70 mic and proteomic data, both in yeast and in higher organisms.
71 y tissue-specific physiological responses in higher organisms.
72 e more complex signaling pathways present in higher organisms.
73         This pathway appears to be unique to higher organisms.
74 re critical for successful interactions with higher organisms.
75  for the annotation of complete genomes from higher organisms.
76 ns is of great importance to the survival of higher organisms.
77 rb regulatory systems that control ageing in higher organisms.
78 olutionary forerunner of P2Y(1) receptors of higher organisms.
79 ue domains are widespread among bacteria and higher organisms.
80 their role as agents of natural selection in higher organisms.
81 abolic rate and aging in yeast and, perhaps, higher organisms.
82 gnition motifs within replication origins of higher organisms.
83 ed into much larger tRNA-binding proteins of higher organisms.
84 ant part of the energy homeostasis system of higher organisms.
85 -epimerase has been isolated previously from higher organisms.
86 gest that similar results may be obtained in higher organisms.
87 iption factors involved in such responses in higher organisms.
88 ction(s) related to embryonic development in higher organisms.
89 t for the wingless/wnt signaling pathways in higher organisms.
90 hromatin structure studies in both yeast and higher organisms.
91 undancy seems to be widespread in genomes of higher organisms.
92 hat could be used toward similar purposes in higher organisms.
93 action system itself-toward the evolution of higher organisms.
94  ancient and ubiquitous defense mechanism in higher organisms.
95 he extracellular matrix adhesion proteins of higher organisms.
96 ic adenosine deaminase that is widespread in higher organisms.
97 important role for 3'-UTRs in the biology of higher organisms.
98 complexes are highly conserved from yeast to higher organisms.
99 th several mechanistic aspects distinct from higher organisms.
100 and transfer through the aquatic food-web to higher organisms.
101 g cellular toxicities and ribosomopathies in higher organisms.
102  provides an essential source of N atoms for higher organisms.
103 ptimizing and widening their applications in higher organisms.
104 NAs in other bacteria and regulatory RNAs in higher organisms.
105 ulation, the sulphur cycle and signalling to higher organisms.
106 ental process underlying the behavior of all higher organisms.
107 ereby providing essential nitrogen atoms for higher organisms.
108 te highly important communication systems in higher organisms.
109 oli may help to predict toxicity patterns in higher organisms.
110 cular ageing factors conserved from yeast to higher organisms.
111  networks of chromatin-based interactions in higher organisms.
112 heir targets across bacterial species and in higher organisms.
113 anism regulating histone deubiquitination in higher organisms.
114 e a framework to study commensal biofilms in higher organisms.
115 ortant epigenetic modification in the DNA of higher organisms.
116 ce, a role for P4Hs that may be conserved in higher organisms.
117 involved in sensing touch and sound waves in higher organisms.
118 t account for the helicase domain present in higher organisms.
119 d regulation of distinct subsets of genes in higher organisms.
120 n is structurally homologous to hnRNP-C from higher organisms.
121 riety of oxidation reactions in microbes and higher organisms.
122 thylation is an epigenetic control factor in higher organisms.
123  questions about how these results relate to higher organisms.
124 ts is essential for survival and behavior of higher organisms.
125 ty to suggested mineralization mechanisms in higher organisms.
126  chromosome conformations in prokaryotes and higher organisms.
127 contributed to functional diversification in higher organisms.
128 c microorganisms pose severe problems to all higher organisms.
129 nctional precursor to the internal memory of higher organisms.
130 h, a simple form of learning usually seen in higher organisms [4].
131 ent from the specificity factors employed in higher organisms, a comparison of the sigma/RNA polymera
132                                           In higher organisms, a major pathway for repairing double s
133 ins to species richness are partly caused by higher organism abundance and are common in plants and b
134 ranzymes) play a critical role in protecting higher organisms against intracellular infections and ce
135                                           In higher organisms, alpha subunits of G proteins have been
136                   Extensive in the brains of higher organisms, alternative splicing might be the prim
137                                           In higher organisms, aminoacyl-tRNA synthetases developed r
138 igh-pressure-inducible phenomena observed in higher organisms, anaesthetics antagonize high-pressure
139 n important tool for genetic manipulation of higher organisms and a model for site-specific DNA-recom
140 nated Sin3A and Sin3B have been described in higher organisms and although functional differences bet
141 stability and expression within the cells of higher organisms and can exhibit specific antigen recogn
142 is widely expressed in nearly all tissues of higher organisms and couples cellular energy status to m
143 ccurs in the mitochondria and peroxisomes in higher organisms and in the peroxisomes in yeast.
144 ing enzyme that is ubiquitously expressed in higher organisms and many prokaryotes.
145 system with features common to those used by higher organisms and outlines a novel mechanism for deli
146  provide an example of trans-kingdom RNAi in higher organisms and suggest the potential of bacteria-m
147 ggered regulatory hierarchies exist in other higher organisms and that Drosophila is providing our fi
148 of a battle for nutritional resource between higher organisms and their microbial pathogens.
149 se LIN proteins have also been identified in higher organisms, and here we analyze the MALS/Veli (mam
150  core set of regulatory factors conserved in higher organisms, and the complex pattern of EB1 targeti
151 tant consideration given that the genomes of higher organisms are riddled with partial tRNA sequences
152 ilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined.
153 ondrial receptors for DRP-1-like proteins in higher organisms as well and that BH3-only proteins play
154                                              Higher organisms as well as medical and technological ma
155 mbination and repair in bacteria, and in all higher organisms as well, due to the functional and stru
156 f the replication primosome subassemblies of higher organisms as well.
157      Homologous enzymes may be widespread in higher organisms, as sulfide-oxidizing activities have b
158                                      In many higher organisms, autocatalysis and decarboxylation are
159                                         This higher organism burden most likely impacted disease path
160 -deficient mice to succumb more quickly with higher organism burden, increased lung pathology, and de
161 meostatic control in physiologic response of higher organisms but is not well understood.
162 are often targets of natural selection among higher organisms, but quantifying the effects of such se
163 utes to the complexity of gene expression in higher organisms, but the regulation of the splice site
164 metal ions that are bound and transported in higher organisms by transferrin.
165                                     Cells of higher organisms can commit suicide in response to genom
166                                              Higher organisms can establish complex associations betw
167                            Such behaviour in higher organisms can often be reduced to a few stereotyp
168 in genetics textbooks, gene transcription in higher organisms cannot be fully understood by analysing
169                                           In higher organisms, carnitine has specific functions in in
170  Casein kinase CK2 is an essential enzyme in higher organisms, catalyzing the transfer of the gamma p
171                              The genome in a higher organism consists of a number of types of nucleot
172 hough they share similar folds, the FEN1s of higher organisms contain a 3'-extrahelical nucleotide (3
173 nase activity than is present in the PKGs of higher organisms containing only two allosteric sites.
174 t an intermediate degree of sensitivity, and higher organisms (containing cholesterol) are largely re
175 ese results we propose that GST evolution in higher organisms could be linked to the defense against
176 many neurotransmitter:sodium symporters from higher organisms depend on Cl(-) ions.
177                   The growth and behavior of higher organisms depend on the accurate perception and i
178                        Genetic efficiency in higher organisms depends on mechanisms to create multipl
179             The transcriptional machinery of higher organisms, despite its greater inherent complexit
180                                        Thus, higher organisms developed a strategy to make tRNA a reg
181 ultiple molecules and elements reflects that higher organism develops a complex translation regulator
182              This suggests that evolution of higher organisms does not suffer a 'cost of complexity'
183 t value to the study of related processes in higher organisms due to the growing evidence for the cro
184                             Cell motility in higher organisms (eukaryotes) is crucial to biological f
185 ion during mitosis is thought to act, in all higher organisms, exclusively through the kinetochore.
186 triction and oxidative stress, features that higher organisms exploit in defending themselves against
187                              Male meiosis in higher organisms features synchronous cell divisions in
188 h may prove useful to study gene function in higher organisms for which transgenic technology is avai
189 ic interactions might not become apparent in higher organisms for years.
190 ation events occurring within the genomes of higher organisms, for example, detecting alternative RNA
191 der to construct gene regulatory networks of higher organisms from gene expression and promoter seque
192                                  However, in higher organisms, fully effective TLS also requires a no
193 eded to generate molecular physical maps for higher-organism genomes.
194 unction and regulation of nicotinamidases in higher organisms has not been determined.
195  of the consequences of ageing on the HSR in higher organisms has not been documented.
196 wever, the complexity of circadian clocks in higher organisms has prevented a clear understanding of
197         Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarci
198 t opening of the heme crevice, suggests that higher organisms have evolved to inhibit peroxidase acti
199 ed to test for dsRNA interference effects in higher organisms in which it is feasible to construct tr
200 r repeat (TTAGGG)n found at the telomeres of higher organisms including humans.
201  Ser/Thr kinase, plays critical roles in all higher organisms including plants.
202 likely to elucidate circadian timekeeping in higher organisms, including how transcription and transl
203 inform stem cell function and dysfunction in higher organisms, including humans.
204 ions of cell-cycle studies in C. elegans for higher organisms, including humans.
205 rapidly cataloguing and cloning the genes of higher organisms, including humans.
206 for our understanding of circadian clocks in higher organisms, including mammals.
207 netic program is evolutionarily conserved in higher organisms, including mammals.
208                     Despite intense study in higher organisms, investigations of voltage and calcium
209 te that degradation of proteins by MPCs from higher organisms involves a nonprocessive mechanism comp
210                                   PEPCK from higher organisms is a monomer, specifically requires GTP
211 well defined in yeast, but its complexity in higher organisms is barely understood.
212                  Cellular differentiation in higher organisms is generally considered irreversible, a
213   However, the translation control system of higher organisms is less understood.
214                        Migration of cells in higher organisms is mediated by adhesion receptors, such
215                Perception of heat or cold in higher organisms is mediated by specialized ion channels
216 his overview is that the unit of function in higher organisms is neither the genome nor the cell alon
217                            The complexity of higher organisms is not simply a reflection of the numbe
218 than half of the genome) of noncoding DNA in higher organisms is not well understood.
219 g evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stall
220         One of the unique characteristics of higher organisms is their ability to learn and adapt to
221                           Gene expression in higher organisms is thought to be regulated by a complex
222 al expansion of specific tRNA synthetases in higher organisms is well documented.
223 which is essential for normal development in higher organisms, is one such macromolecular machine.
224 nal circuitry that takes years to develop in higher organisms, it also poses a major obstacle for CNS
225 es by plants suggested toxicological risk to higher organisms known to utilize macrophytes as a food
226 ortant for the interactions of bacteria with higher organisms - leading to rhizosphere colonization a
227 e presence of highly conserved paralogues in higher organisms led us to assess whether compensation b
228 ng in both lower organisms like bacteria and higher organisms like yeast, which allows them to prefer
229                        PAK-family kinases in higher organisms may have similar functions.
230 fe-span extension by CR and suggest that, in higher organisms, multiple members of the Sir2 family ma
231 s is among the most fundamental processes of higher organism ontogenesis.
232                                           In higher organisms PAPS synthesis is catalyzed by a bifunc
233  one's own body, is a fundamental ability of higher organisms, playing a central role in many percept
234          These results indicate that Sir2 in higher organisms plays an essential role in both euchrom
235 titution of functionally effective mimics of higher organism PTMs.
236 ained and propagated within somatic cells of higher organisms, recent in vitro and in vivo evidence d
237 E-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding.
238          Entrainment of circadian rhythms in higher organisms relies on light-sensing proteins that c
239  the circadian clock in Drosophila and other higher organisms relies on the quantification of rhythmi
240                                              Higher organisms rely on a closed cardiovascular circula
241 de novo pathway in bacteria and plants, most higher organisms rely on a salvage pathway that phosphor
242 t molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to
243 f the large non-coding part of the genome in higher organisms remains poorly understood.
244 ole of the coagulation system in immunity in higher organisms remains unclear.
245                                  REVIEW Most higher organisms reproduce sexually, despite the automat
246                                        Thus, higher organisms require alternate modes of reducing the
247                             Transcription in higher organisms requires spatiotemporal coordination of
248           Sulfation of all macromolecules in higher organisms requires the high-energy donor 3'-phosp
249 uent quantitative analysis of total RNA from higher organisms revealed varying levels and TET-indepen
250 r based on host defense peptides (HDPs) from higher organisms, show promising activity against human
251                                       In all higher organisms studied to date, related Group B Sox pr
252  this approach remains a major challenge for higher organisms such as humans.
253 ity has not yet been clearly demonstrated in higher organisms such as mammals.
254 ingle cell eukaryotes such as yeasts, and in higher organisms such as man.
255 y perceived that tissues were only formed by higher organisms such as plants and animals.
256                                           In higher organisms such as vertebrates, it is generally be
257 tingly, R(442) is conserved in most STATs in higher organisms, suggesting conservation of function.
258 he amino acid sequences of p67 from lower to higher organisms suggests that there is a progressive ad
259 e closely related to 2-Cys peroxiredoxins of higher organisms than to most other eubacterial AhpC pro
260  peptides are important defense compounds of higher organisms that can be used as therapeutic agents
261 tion is a post-translational modification of higher organisms that deiminates arginines in proteins a
262     Redundancy is common among phenotypes of higher organisms that experience low mutation rates and
263                           Unlike the PKGs of higher organisms that have two cGMP binding sites in the
264 network of apoptotic pathways has evolved in higher organisms that possess homologs within each set o
265  a class of small cationic peptides found in higher organisms that serve as both antimicrobial and ce
266 tances, directly influence interactions with higher organisms, the broader physiological significance
267                                  Thus, as in higher organisms, the Drosophila nervous system is diffe
268                                           In higher organisms, the functions of many proteins are mod
269  disadvantages like notable toxicity against higher organisms, the high price, and low abundance of s
270 -surface receptors, muscle structure and, in higher organisms, the immune system.
271 of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abando
272                                           In higher organisms, the phenotypic impacts of potentially
273 genetic pathways and pathway components with higher organisms, the study of its interaction with bact
274 s an integral role in calcium homeostasis in higher organisms through its actions in the intestine, k
275                  Information on responses of higher organisms to climate change is dominated by event
276 nt a new class of genes that have evolved in higher organisms to govern the synthesis of highly speci
277 tic life cycle, as well as traits that allow higher organisms to survive rare environmental disasters
278                              Particularly in higher organisms, transcription factors (TFs), microRNAs
279 ein degradative process that is activated in higher organisms under conditions of prolonged starvatio
280 llular apoptosis: why do the mitochondria of higher organisms, unlike their bacterial ancestors, use
281 espite what is known about apocarotenoids in higher organisms, very little is known about apocaroteno
282 hese postulates are valid for the MPC from a higher organism, we examined the size distributions of p
283 d feature prediction tools in the genomes of higher organisms, we evaluated their performance on a la
284 sulfate donor for sulfate ester formation in higher organisms, we have undertaken a kinetic character
285 , inspired by scaffold-directed signaling in higher organisms, we modularize prokaryotic signal trans
286 t composite TFBS elements, commonly found in higher organisms where two or more TFBSs form functional
287 n of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail
288                         Phe37 exists only in higher organisms, whereas it is replaced by other residu
289  biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additiona
290 ted at the beginning of the fossil record of higher organisms, while the differences between the anci
291                     How could this happen in higher organisms whose populations are small compared to
292 head: understanding the molecular biology of higher organisms will require revealing all proteins (Pr
293 teractions between vibrios, (micro)algae and higher organisms, with major ecological and practical im

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top