戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 volve unpaired electron density at C3 of the indole ring.
2  and either the nicotinamide ring or Trp-677 indole ring.
3 stituents or nitrogens incorporated into the indole ring.
4 st sensitive to changes at position 5 of the indole ring.
5 d the sterically forbidden region around the indole ring.
6  chain nitrogen as part of an indoline or an indole ring.
7 ed by replacing the o-bromophenol unit by an indole ring.
8 ocenter attached to the C(2)-position of the indole ring.
9  as well as at the 2- and 3-positions of the indole ring.
10 g and/or positioning via the NH group of the indole ring.
11 eraction by stacking the flipped base on the indole ring.
12 re used to assess the geometry of the planar indole ring.
13 ect attack of O2 on the C2 atom of the L-Trp indole ring.
14 nd to occur with systems containing tethered indole rings.
15 rmations stabilized by cross-strand pairs of indole rings.
16 ect hydrogen bond between the phenol and the indole rings.
17 xciton splitting produced by the stacking of indole rings.
18 wo oxygen atoms are inserted into one of the indole rings.
19 ent of conjugation between the maleimide and indole rings.
20  with phenyl, pyridyl, bicyclic aromatic, or indole rings.
21 interaction between the galactopyranosyl and indole rings.
22 anese superoxide dismutase (MnSOD), with its indole ring adjacent to and about 5 A from the manganese
23 e His-435 imidazole ring against the Trp-457 indole ring, allowing an electrostatic interaction that
24 he binding moieties of the inhibitor are its indole ring and a carboxyl group.
25 e insertion of a second oxygen atom into the indole ring and covalently linking betaTrp57 to betaTrp1
26 n differences in the position assumed by the indole ring and differences in agonist activity.
27 ual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional c
28  normal and reverse prenylation at C3 of the indole ring and normal prenylation of N1.
29 terium violaceum, mediates a 1,2 shift of an indole ring and oxidative chemistry to generate prodeoxy
30 scence was due to an interaction between its indole ring and the positively charged guanidino group o
31  containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed di
32 A)(1) channels to refine the geometry of the indole ring and, specifically, the C2-(2)H bond directio
33 actonization of a diol in the presence of an indole ring; and a late-stage cyclization to complete th
34 genated substituents on the phenyl rings and indole rings are described.
35 bstitutions on the 4- and 6-positions of the indole ring as well as methyl substitution on the cycloh
36     In this orientation, the line connecting indole ring atoms N1 and C2 is nearly perpendicular to t
37 3(E7) betaCO subunits and indicates that the indole ring blocks the entrance to the E7 channel, as ob
38  6 degrees with respect to the normal to the indole ring bridge, and the experimental geometry was co
39 identify a common hydrophobic pocket for the indole ring but exhibit unusual heme ligation and substr
40  region of the pi-clouds for the benzene and indole rings but not for the pyridinylmethyl or pyrazin-
41    Our binding studies show that benzene and indole rings, but not pyridinylmethyl nor pyrazin-2-ylme
42 perm whale myoglobin labeled with 13C at the indole ring C-3.
43 ween high and low pH, push the imidazole and indole rings closer together at low pH.
44                          Substitution on the indole ring did lead to improved CB 2/CB 1 binding selec
45  residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assa
46 (a characteristic of average polarity of the indole rings' environments) and integrated fluorescence
47 xchange of the remaining four protons in the indole ring for deuterium, comparison could be made to d
48 allows quick and atom-economical assembly of indole rings from inexpensive and readily available anil
49 substituents at the 5 and 7 positions of the indole ring gave high affinity for hSERT, and the prefer
50 Replacement of the phenol group of 2 with an indole ring generated the first potent D1/D5 antagonist
51 erimental precision in the definition of the indole ring geometry demonstrates yet another practical
52 oncert with an improved understanding of the indole ring geometry, to analyze prototype 2H NMR spectr
53 e ring and a halogen or a nitro group in the indole ring have enhanced antiplasmodial activity.
54 een an aliphatic or phenyl side chain and an indole ring in a phospholipid environment were investiga
55 f the morpholino group from the plane of the indole ring in compound 1 is essential for cannabimimeti
56 spectra of fd indicate that the plane of the indole ring in each pVIII subunit is close to parallel t
57 (+), the tryptamine NH(2) lone pair, and the indole ring in K(+)(Tryp) favors the formation of these
58 xylation and subsequent methoxylation of the indole ring in position 1 (1-IG modification) or 4 (4-IG
59 B27-31)RLF, clearly indicate that the intact indole ring in position B27 is crucial for high RLF rece
60 kewise, exchanging the 2-methyl group on the indole ring in the ester and amide series with a hydroge
61 oduct was the result of C-2 oxidation of the indole ring, in contrast to other human P450s that gener
62 tions are stabilized largely by cross-strand indole ring interactions.
63 rough its trajectory, whereas at high pH the indole ring is further away from the imidazole.
64  be binding to the heme iron of IDO; (ii) an indole ring is not necessary for IDO inhibition; and (ii
65                                          The indole ring is positioned correctly for oxygenation at t
66 rance to the binuclear metal center, and the indole ring is positioned to suggest that it could provi
67 f indole-2-carboxamides, the presence of the indole ring is preferred for maintaining the modulator's
68 t the Trp residue, and more specifically the indole ring, is not critical for receptor interaction an
69 aving the ammonium group closer to C4 of the indole ring (labeled C5 in the cis-W3 X-ray structure).
70 naphthalene diimide (NDI) with two annulated indole rings leading to carbazolo[2,3-b]carbazole diimid
71 -3beta, the additional nitrogen atoms in the indole rings may contribute to a significant degree.
72 ne side-chain forms a covalent bond with the indole ring nitrogen atom of Trp51.
73 , altered connectivity, and mimicking of the indole ring of 17 failed to maintain A2BAR potency.
74 eled as a decrease in the cone angle for the indole ring of about 12 degrees.
75 d, and two carbonyl oxygens are added to the indole ring of betaTrp(57).
76      TDO catalyzes oxidative cleavage of the indole ring of L-tryptophan (L-Trp), converting it to N-
77 catalyzes the methylation of carbon 2 of the indole ring of L-tryptophan.
78 xploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify comp
79    The introduction of chlorine atoms on the indole ring of malbrancheamide differentiates it from ot
80  cytochrome c heme edge is within 4 A of the indole ring of subunit II residue Trp(104), indicating a
81                                          The indole ring of the critical penultimate Trp-residue of T
82 owever, 6-isothiocyanato substitution on the indole ring of the desmethyl analog provided isothiocyan
83 he atomic-resolution structure of F359W, the indole ring of the tryptophan completely fills the tunne
84 yl side chain of Phe 161 superimposes on the indole ring of Trp 161 in the wild type.
85 e a mannose is linked to the N-1 atom of the indole ring of Trp residue.
86     Excited-state electron transfer from the indole ring of Trp to the carbonyl groups of peptide bon
87                It therefore appears that the indole ring of Trp(143) mediates electron transfer from
88  acyl chain, the six-membered portion of the indole ring of Trp(9) is displaced by about 0.9 angstrom
89 g TTQ are the addition of two oxygens to the indole ring of Trp(beta)(57) and the formation of a cova
90 ivatives as exogenous proton donors with the indole ring of Trp-64; these experiments include pH prof
91 utant is accommodated at the location of the indole ring of Trp-741 in the WT AR bound to dihydrotest
92 of a mannose residue and the N-1 atom of the indole ring of Trp.
93 d with a slight rotation and shifting of the indole ring of Trp148, which eventually creates a slot f
94  and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic dir
95                                          The indole ring of Trp355 is coplanar with or perpendicular
96 ntgegen-H(N) of the C-terminal amide and the indole ring of Trp6 that stabilizes a face-to-edge indol
97                In particular, the NOE of the indole ring of tryptophan 49, at the tip of the beta-hai
98 ion of a reaction byproduct arising from the indole ring of tryptophan residues.
99 uanidinium functionality of arginine and the indole ring of tryptophan, resulting in structural stabi
100  favorable pi-stacking interactions with the indole ring of tryptophan.
101 e of glycine followed by chlorination of the indole ring of tryptophan.
102   For the initial step, HOCl chlorinates the indole ring of tryptophan.
103 n different ways: the -OH group of Y342, the indole ring of W334, and the aromatic rings of F335, Y34
104 ial D-amino acid transaminase shows that the indole rings of the two Trp-139 side chains face each ot
105         Distances between the centers of the indole rings of the two-tryptophan residues, 2 and 4, an
106 al dimeric interface with the two juxtaposed indole rings of Trp-139 is important for optimal catalyt
107 ysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable fro
108 y four imidazole rings from the top and four indole rings of Trp41 from the bottom, thus explaining t
109 t the orientation in the binding site of the indole rings of tryptophan and 5-methyltryptophan and of
110 ophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-lin
111   We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl
112 avy chain, which may be coupled to the novel indole ring orientation of the adjacent Trp H103.
113 hannel conductance and lifetime, and average indole ring orientations within the membrane-spanning ch
114 oton-deuterium exchange-out for the resolved indole ring protons of the two tryptophan residues was q
115 s catalyze C(4)- and C(7)-prenylation of the indole ring, respectively.
116 imination of the 2-methyl substituent on the indole ring resulted in a 10-fold decrease in binding af
117 pheral substitution at the 5-position of the indole ring resulted in a compound with pK(a) approximat
118 aired or mismatched nucleotides by employing indole ring stacking with the bases as a criterion of de
119 the nature of the substitutions on the basic indole ring structure and correlates well with the obser
120                                              Indole ring substitutions had varying effects on CB 2 an
121 points for an investigation of the effect of indole ring substitutions on CB 2 and CB 1 binding affin
122 possesses the parent tetrahydropyrrolo[1,2-a]indole ring system characteristic of the mitomycin famil
123 uinone methide formation from a pyrido[1,2-a]indole ring system.
124                      Using benzimidazole and indole ring systems we show the versatility of these vin
125 mately 8-A-diameter axial channel lined with indole rings that is filled with polyethylene glycol 400
126 atom specific modification of the tryptophan indole rings through analogue substitution produced a pr
127  formed during the oxidative cleavage of the indole ring to give kynurenine.
128  substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range
129  as well as flipping of the conserved Trp205 indole ring to pack on the thiol side chain.
130      For example, the ability of benzene and indole rings to bind the Trp(8) binding pocket for SRIF-
131  measured order parameters indicate that the indole rings undergo simultaneous chi1 and chi2 torsiona
132 hanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket".
133 bamates containing a tethered pi-bond on the indole ring were examined as an approach to the iboga al
134 uent appended to the 4- or 5-position of the indole ring were prepared and tested as inhibitors of hn
135 dissociative electrophilic alkylation of the indole ring, where orientation of the substrates within
136                           Replacement of the indole ring with azaindole conferred a 30-fold increase
137 c acid complexes, suggesting stacking of the indole ring with nucleobases and the simultaneous involv
138 ions of the R84 guanidinium group or the W89 indole ring with the substrates.
139 ations of the orientation of each tryptophan indole ring, with respect to the bilayer membrane normal

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top