戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 to nontypeable Haemophilus influenzae (NT H. influenzae).
2 lococcus aureus, and potentially Haemophilus influenzae).
3 helial cells, facilitating persistence of H. influenzae.
4 egions, for all pathogens except Haemophilus influenzae.
5  was designed to detect all serogroups of H. influenzae.
6 included known pathogens such as Haemophilus influenzae.
7 nd Gram-negative bacteria and to Haemophilus influenzae.
8 fense against the human pathogen Haemophilus influenzae.
9 s pneumoniae, Neisseria meningitidis, and H. influenzae.
10 moniae, and 54% for non-typeable Haemophilus influenzae.
11 ilar to the less virulent nonencapsulated H. influenzae.
12 m/sulfamethoxazole and azithromycin among H. influenzae.
13  disease caused by H. haemolyticus and NT H. influenzae.
14 iae, Neisseria meningitidis, and Haemophilus influenzae.
15 ccus pneumoniae and non-typeable Haemophilus influenzae.
16 solates of S. pneumoniae (3329 isolates), H. influenzae (1545 isolates), and M. catarrhalis (456 isol
17  a reduced relative abundance of Haemophilus influenzae (35.3% [5.5-91.6] vs 6.7% [0.8-74.8]; median
18      Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract dis
19  discrimination of H. haemolyticus and NT H. influenzae, a testing scheme combining two targets (H. h
20                                  Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP
21  by Streptococcus pneumoniae and Haemophilus influenzae among children has been noted in numerous stu
22  (95% CI, 2.13-3.88) for all serotypes of H. influenzae and 2.90 (95% CI, 2.11-3.89) for unencapsulat
23 eningitidis and ceftriaxone, and Haemophilus influenzae and ceftriaxone.
24  and specificity for identifying Haemophilus influenzae and differentiating it from H. haemolyticus.
25  been achieved against wild-type Haemophilus influenzae and efflux-deficient mutants of Escherichia c
26 an interaction between the human pathogen H. influenzae and FH.
27                                        NT H. influenzae and H. haemolyticus are often misidentified b
28  and the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis .
29 h Gram-negative bacteria such as Haemophilus influenzae and Moraxella catarrhalis was found to be ass
30 s of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized th
31 rotype replacement may prevent changes in H. influenzae and S. aureus carriage among PCV7 recipients.
32 nical interventions, including changes in H. influenzae and S. aureus disease incidence following pne
33 lymerase chain reaction assays quantified H. influenzae and S. pneumoniae and confirmed H. influenzae
34 re high inoculum and pH 5.5 (no growth of H. influenzae and S. pneumoniae by BMD).
35 alization were positively associated with H. influenzae and Streptococcus and negatively associated w
36  with conjugate vaccines against Haemophilus influenzae and Streptococcus pneumoniae has virtually el
37                                  Haemophilus influenzae and Streptococcus pneumoniae were the main ag
38 cytial virus; RSV) and bacteria (Haemophilus influenzae and Streptococcus pneumoniae) in children who
39 d and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic
40    In the Gram-negative bacteria Haemophilus influenzae and Vibrio cholerae, the master regulator Sxy
41 machinery from the opportunistic pathogen H. influenzae (and the homologous enzymes from A. pleuropne
42  S aureus, 992 CoNS, 330 S pneumoniae, 357 H influenzae, and 389 P aeruginosa) were collected from 72
43  10 Streptococcus pneumoniae, 10 Haemophilus influenzae, and 5 Escherichia coli isolates by MIC and 3
44 eisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share str
45 CR for Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were performed on
46 teria (Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis) were identified i
47 ia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida.
48 phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficien
49 sseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress
50  pathogenic bacteria including Y. pestis, H. influenzae, and Proteus that cause plague, meningitis, a
51 CoNS), Streptococcus pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa.
52 aphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa.
53              The fact that S. pneumoniae, H. influenzae, and S. aureus polymicrobial carriage pattern
54 udomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhim
55 arynx with M. catarrhalis, S. pneumoniae, H. influenzae, and Staphylococcus aureus was assessed simul
56 eumoniae, Moraxella catarrhalis, Haemophilus influenzae, and Staphylococcus aureus.
57 pathogens Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae, but not other
58 ainly by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, inflicts a sub
59 ng protein of the Gram-negative bacterium H. influenzae, and when converted to plasmin, PE-bound plas
60 onates were colonized with S. pneumoniae, H. influenzae, and/or M. catarrhalis at 4 weeks of age.
61 ofiles of children with RSV infection and H. influenzae- and Streptococcus-dominated microbiota were
62 negatively regulates nontypeable Haemophilus influenzae- and TNF-alpha-induced NF-kappaB-dependent in
63 mmunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleav
64 us, Streptococcus pneumoniae and Haemophilus influenzae are the major causes of conjunctivitis.
65 H. parainfluenzae during coinfection with H. influenzae are topics for future work.
66         Here, using non-typeable Haemophilus influenzae as a model organism, we report that this effe
67 nfluenzae and S. pneumoniae and confirmed H. influenzae as nontypeable (NTHi).
68 ruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococcus pneumonia
69 ATCC 49619 (disk and broth), and Haemophilus influenzae ATCC 49247 (disk and broth).
70 23, Escherichia coli ATCC 25922, Haemophilus influenzae ATCC 49247, and Streptococcus pneumoniae ATCC
71 umoniae ATCC 49619, and 2 to 8 mug/ml for H. influenzae ATCC 49247.
72 neumoniae ATCC 49619, and 16 to 20 mm for H. influenzae ATCC 49247.
73 England immunized with DTaP5/IPV/Haemophilus influenzae b (Hib-TT) vaccine at 2-3-4 months, 13-valent
74 healthy and presented with unencapsulated H. influenzae bacteremia.
75 irus, parainfluenza viruses, and Haemophilus influenzae being the most common.
76 gainst PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable Haemophilus
77 xacerbations and promoted displacement of H. influenzae by more macrolide-tolerant pathogens includin
78 resent the Arg160His mutation of Haemophilus influenzae carbonic anhydrase (HICA), which mimics the e
79  showed an apparent transient increase in H. influenzae carriage but no further significant differenc
80 increases in density of other species and H. influenzae carriage prevalence.
81 Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infections in the
82 and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from a
83 re is evidence for an association between H. influenzae colonization density and H. influenzae-confir
84                        M. catarrhalis and H. influenzae colonization of the airways of asymptomatic n
85 90 (95% CI, 2.11-3.89) for unencapsulated H. influenzae compared with the background rate for pregnan
86 en H. influenzae colonization density and H. influenzae-confirmed pneumonia in children; the associat
87                     Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferas
88 ct on nasopharyngeal NTHi colonization or H. influenzae density in healthy Dutch children up to 2 yea
89 tween groups in either NTHi prevalence or H. influenzae density were detected.
90                The development of a rapid H. influenzae diagnostic assay that would allow for the imp
91                                  Invasive H. influenzae disease confirmed by positive culture from a
92  years with laboratory-confirmed invasive H. influenzae disease during 2009-2012, encompassing 45,215
93 ristics, and outcome of neonatal invasive H. influenzae disease in England and Wales over a 5-year pe
94 nhanced national surveillance of invasive H. influenzae disease in England and Wales.
95 nhanced national surveillance of invasive H. influenzae disease in England and Wales.
96 incidence rate of invasive unencapsulated H. influenzae disease was 17.2 (95% CI, 12.2-24.1; P < .001
97 susceptibility to invasive unencapsulated H. influenzae disease.
98 eonates had laboratory-confirmed invasive H. influenzae disease: 115 (97%) were NTHi, 2 were serotype
99                                           H. influenzae displays various strategies to circumvent the
100 f IgA proteases are variably expressed by H. influenzae during infection of the human airways.
101                            Using Haemophilus influenzae Eagan strains expressing well-characterized l
102 atives of a laboratory strain of Haemophilus influenzae expressing either surface-associated Cha1 or
103 our attention to bacteria, i.e., Haemophilus influenzae, expressing cell-surface adhesins including N
104                   Unencapsulated Haemophilus influenzae frequently causes noninvasive upper respirato
105  was maintained against S. pneumoniae and H. influenzae from 2008 through 2010, increased rates of no
106 ity to serve as biomarkers to distinguish H. influenzae from H. haemolyticus.
107 n and a significant outgrowth of Haemophilus influenzae from the existing microbiota of subjects with
108 We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine mo
109         To survive and propagate in vivo, H. influenzae has evolved mechanisms for subverting this ho
110                                  Haemophilus influenzae (Hi) causes respiratory tract infections and
111  catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichia coli (EcAr
112 ing two targets (H. haemolyticus purT and H. influenzae hpd, encoding protein D lipoprotein) was also
113 globulin genes) displayed anti-nontypeable H influenzae IgM antibodies in their serum and saliva.
114 ther affected internalization of Haemophilus influenzae in bronchial epithelial cells.
115  agalactiae, E. coli, N. meningitidis, or H. influenzae in combination with cefotaxime or ceftriaxone
116 on of S. pneumoniae, N. meningitidis, and H. influenzae in CSF, and that application of molecular dia
117 c acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature
118 s of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residues had been
119      Colonization with M. catarrhalis and H. influenzae induced a mixed T helper cell (Th) type 1/Th2
120 lecular mechanism involved in nontypeable H. influenzae-induced cochlear infiltration of polymorphonu
121 aling pathway is required for nontypeable H. influenzae-induced CXCL2 upregulation in the rat spiral
122 study, we found that nontypeable Haemophilus influenzae induces the association of Itch with Ndfip1.
123  N-Glc, to establish a connection between H. influenzae infection and MS.
124                   The primary outcome was H. influenzae infection and the secondary outcomes were pre
125                            Unencapsulated H. influenzae infection during the first 24 weeks of pregna
126                            Unencapsulated H. influenzae infection during the second half of pregnancy
127 rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-
128 1 women had laboratory-confirmed invasive H. influenzae infection, which included 144 (84.2%; 95% CI,
129  of IgA proteases in clinical settings of H. influenzae infection.
130 ssociated with a greater risk of invasive H. influenzae infection.
131 Novel mouse models of Chlamydia, Haemophilus influenzae, influenza, and respiratory syncytial virus r
132 p and LPS biosynthesis that can influence H. influenzae interactions with the host.
133                                  Haemophilus influenzae is a Gram-negative human pathogen that reside
134                                  Haemophilus influenzae is a rare cause of soft tissue infection.
135                                  Haemophilus influenzae is a significant causative agent of respirato
136                     Non-typeable Haemophilus influenzae is an opportunistic pathogen of the human upp
137           The lipopolysaccharide (LPS) of H. influenzae is highly variable.
138 ammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficie
139 s, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later development of chil
140 ns were predicted in nontypeable Haemophilus influenzae isolates based on the presence of seven oligo
141  significantly more prevalent in Haemophilus influenzae isolates causing otitis media and chronic obs
142 ce of antibody and complement in multiple H. influenzae isolates.
143 X-ray structure determination of Haemophilus influenzae KDO8PP bound to KDO/VO3(-) and Bacteriodes th
144           In this study, we identified an H. influenzae lipoprotein having the ability to bind factor
145  specimens: Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseria meningitid
146 wn that the C-terminal domain of Haemophilus influenzae LpoA (HiLpoA) has a highly conserved, putativ
147 ed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH).
148                     The immune response to H influenzae, M catarrhalis, and S pneumoniae was analyzed
149 without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high-priority pa
150 gh extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport sys
151  meningococcal, pneumococcal, or Haemophilus influenzae meningitis in the period 1977-2007 (n=2784 pa
152 ievements of siblings of pneumococcal and H. influenzae meningitis patients did not differ substantia
153 %) fewer meningococcal, pneumococcal, and H. influenzae meningitis patients were economically self-su
154                        Annual incidence of H influenzae meningitis per 100,000 children decreased fro
155 ay apply particularly to pneumococcal and H. influenzae meningitis, whereas for meningococcal meningi
156 tes in children younger than 15 years with H influenzae, meningococcal and pneumococcal meningitis, a
157 ed for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus au
158 the pathogenic bacterial strains Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pne
159  with bacterial coinfection with Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneu
160 We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus
161 ere detected frequently, notably Haemophilus influenzae (mostly nontypeable) together with S. pneumon
162 ory milieu during infection, non-typeable H. influenzae must resist the antimicrobial activity of the
163  revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison wi
164 as aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), and Veillonell
165 occal (n=1338), pneumococcal (n=455), and H. influenzae (n=991) meningitis, an estimated 11.0% (41.5%
166 rus [n = 5], adenovirus [n = 5], Haemophilus influenzae [n = 5], and Streptococcus pneumoniae [n = 5]
167 introduction of conjugate vaccines against H influenzae, N meningitidis, and S pneumoniae in England.
168 chia coli, Campylobacter jejuni, Haemophilus influenzae, Neisseria meningitidis, and Pasteurella mult
169                   Infection with Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pn
170 ogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumonia
171 s closely related to nontypeable Haemophilus influenzae (NT H. influenzae).
172 The mucosal pathogen nontypeable Haemophilus influenzae (NTHi) adheres to the respiratory epithelium
173 s a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investigated as a va
174   Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurre
175 lus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway comme
176 occus pneumoniae and nontypeable Haemophilus influenzae (NTHi) are frequently implicated in complex o
177                      Nontypeable Haemophilus influenzae (NTHI) are Gram-negative bacteria that coloni
178  commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases t
179 h H. influenzae strain Rd and nontypeable H. influenzae (NTHi) clinical isolate NT127.
180                      Nontypeable Haemophilus influenzae (NTHi) exclusively infects humans, causing si
181                      Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear durin
182                      Nontypeable Haemophilus influenzae (NTHi) frequently causes noninvasive upper re
183           Studies of nontypeable Haemophilus influenzae (NTHi) have demonstrated that a number of gen
184 pneumoniae (Spn) and nontypeable Haemophilus influenzae (NTHi) in stringently defined otitis-prone (s
185 occus pneumoniae and nontypeable Haemophilus influenzae (NTHi) infections (M-OM) and those with OM du
186                      Nontypeable Haemophilus influenzae (NTHi) initiates infection by colonizing the
187                      Nontypeable Haemophilus influenzae (NTHi) is a bacterium that resides within the
188                      Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human
189                      Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the hu
190                      Nontypeable Haemophilus influenzae (NTHI) is a common commensal and opportunisti
191                      Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opportunistic path
192                      Nontypeable Haemophilus influenzae (NTHI) is a leading cause of opportunistic in
193                      Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen for OM.
194                     Non-typeable Haemophilus influenzae (NTHi) is a major cause of mucosal infections
195 pathogenic bacterium nontypeable Haemophilus influenzae (NTHi) is surface exposed and a leading vacci
196                      Nontypeable Haemophilus influenzae (NTHI) is the causative agent of multiple res
197                      Nontypeable Haemophilus influenzae (NTHi) is the dominant bacterium isolated fro
198                      Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial pathogen duri
199 inst nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the s
200 ne the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on pathogenesis and
201                      Nontypeable Haemophilus influenzae (NTHi) persists in the airways in chronic obs
202                      Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic spe
203 ted for pneumococcal, nontypable Haemophilus influenzae (NTHi), Moraxella catarrhalis, Streptococcus
204 f biofilms formed by nontypeable Haemophilus influenzae (NTHI), those directed against a recombinant
205 pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this increased su
206  of phagocytosis for nontypeable Haemophilus influenzae (NTHI).
207 o cigarette smoke or nontypeable Haemophilus influenzae (NTHi).
208  of ccl3(-/-)mice to nontypeable Haemophilus influenzae (NTHi).
209 ry pathogens such as nontypeable Haemophilus influenzae (NTHi).
210 e commonly caused by nontypeable Haemophilus influenzae (NTHi).
211 rategies employed by nontypeable Haemophilus influenzae (NTHi).
212 g microbiota such as nontypeable Haemophilus influenzae (NTHi).
213 nd colonization with nontypeable Haemophilus influenzae (NTHi).
214 d with bacteria [eg, nontypeable Haemophilus influenzae (NTHi)] that cause pulmonary inflammation and
215 e for S. pneumoniae, N. meningitidis, and H. influenzae, only 10 were culture positive.
216    Plasminogen, either attached to intact H. influenzae or bound to PE, was accessible for urokinase
217 l airway colonization with S. pneumoniae, H. influenzae, or M. catarrhalis is associated with increas
218 nfluence total carriage of S. pneumoniae, H. influenzae, or S. aureus.
219 , NFkB activation by nontypeable Haemophilus influenzae (p = 0.001), TLR4 (p = 0.008) and TLR 9 (p =
220 otably in potentially pathogenic Haemophilus influenzae (P = 2.7 x 10(-20)), from a preexisting commu
221 1beta (M. catarrhalis, P = 1.6 x 10(-11); H. influenzae, P = 2.7 x 10(-7)).
222 -alpha (M. catarrhalis, P = 1.5 x 10(-9); H. influenzae, P = 5.9 x 10(-7)), and macrophage inflammato
223 1beta (M. catarrhalis, P = 2.2 x 10(-12); H. influenzae, P = 7.1 x 10(-10)), TNF-alpha (M. catarrhali
224                                       The H. influenzae pangenome has 2 alleles of IgA protease genes
225 cinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus.
226  The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from
227 -valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) on naso
228                                  Haemophilus influenzae protein F (PF) is an important virulence fact
229 ically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be me
230  but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice.
231   This novel interaction is important for H. influenzae resistance against complement activation and
232 00% specificity for the identification of H. influenzae, respectively.
233 ndent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine r
234 respiratory pathogen nontypeable Haemophilus influenzae resulted in a marked increase in expression o
235 allenge of Trim29(-/-) mice with Haemophilus influenzae resulted in lethal lung inflammation due to m
236 humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing ge
237 Detection rates were 53%, 17%, and 11% for H influenzae, S pneumoniae, and M catarrhalis, respectivel
238 umoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Rickettsia typh
239          The introduction of the Haemophilus influenzae serotype b (Hib) conjugate vaccine into natio
240  in contrast to Hib, infections caused by H. influenzae serotype f (Hif) are emerging.
241 lthy adult patient, secondary to Haemophilus influenzae serotype f infection, and we review literatur
242 ential factor in serum resistance of both H. influenzae strain Rd and nontypeable H. influenzae (NTHi
243 thesis of the LPS oligosaccharide core in H. influenzae strain Rd/HapS243A, resulted in loss of Hap i
244 s of age were cultured to detect Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrha
245 cterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium, Moraxella, o
246 glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression
247 Upon exposure of serum-sensitive Haemophilus influenzae to human serum, Ecb protected the bacteria, a
248 ned in this work highlight the ability of H. influenzae to utilize a single protein to perform multip
249                                           H. influenzae TolR(62-133) is a symmetrical dimer with a la
250 tion of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused thieno-pyri
251 detection of 2 cases of invasive Haemophilus influenzae type a (Hia) disease in Italy.
252 , tetanus, pertussis, polio, and Haemophilus influenzae type b (DTaP-IPV-Hib) administered at ages 3,
253 pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTaP-IPV-Hib) vaccine since September
254   A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningococcal polysa
255                              Encapsulated H. influenzae type b (Hib) and type f (Hif) are the most co
256  pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most common pathogens
257 nactivated poliovirus (IPV), and Haemophilus influenzae type b (Hib) conjugate vaccine (DTaP-IPV-Hib)
258                                  Haemophilus influenzae type b (Hib) conjugate vaccine, delivered as
259        The incidence of invasive Haemophilus influenzae type b (Hib) disease has significantly decrea
260 in Malawi during introduction of Haemophilus influenzae type b (Hib) vaccination and the rollout of a
261 in Africa to introduce conjugate Haemophilus influenzae type b (Hib) vaccine, which, as in other deve
262 us pneumoniae polysaccharide and Haemophilus influenzae type b (Hib) vaccines in ITP patients.
263               Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated
264 ) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconj
265 fants in both groups received the combined H influenzae type b and capsular group C Neisseria meningi
266 predominant invasive pathogen as Haemophilus influenzae type b and pneumococcal vaccine use in Mali h
267 spread use of vaccines targeting Haemophilus influenzae type b and Streptococcus pneumoniae have dram
268                                       Anti-H influenzae type b anti-polyribosylribitol phosphate IgG
269                             Nasopharyngeal H influenzae type b carriage was detected in one (0.2%) of
270 llular pertussis-inactived polio-Haemophilus influenzae type b combined vaccine (DTaP-IPV-Hib) at 2,
271 ysaccharide vaccine (PsACWY); or Haemophilus influenzae type b conjugate vaccine (Hib-TT).
272                  The incidence of invasive H influenzae type b disease in children younger than 5 yea
273 ation (2010-14), only one case of invasive H influenzae type b disease was detected in a child younge
274 ficant and sustained reduction in invasive H influenzae type b disease.
275      We analysed sterile site cultures for H influenzae type b from children (aged </=12 years) admit
276 nificance and characteristics of Haemophilus influenzae type b genogroup strains isolated from genito
277 niae, Neisseria meningitidis, and Hemophilus influenzae type b induce functional opsonic or bacterici
278 in 1994, after the introduction of routine H influenzae type b vaccination.
279 pertussis, measles, rubella, and Haemophilus influenzae type b vaccine antigens were comparable betwe
280 pertussis-inactivated poliovirus/Haemophilus influenzae type b vaccine; age 6/10/ 14 weeks) and 13-va
281  in 2015, using pneumococcal and Haemophilus influenzae type b vaccines.
282 cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine.
283 ertussis, hepatitis B virus, and Haemophilus influenzae type b), yellow fever, measles, and tuberculo
284 (diphtheria, tetanus, pertussis, Haemophilus influenzae type b, and hepatitis B) at 6, 10, and 14 wee
285 mococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines.
286 rise disease syndromes caused by Haemophilus influenzae type b, pneumococcus, rotavirus, and early in
287                    The bacterium Haemophilus influenzae typically colonizes the human upper respirato
288 ected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combin
289 cid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter.
290 nst an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improve
291  whereas resistance among P aeruginosa and H influenzae was low against the antibiotics tested.
292           Regardless of rhinovirus status, H influenzae was not associated with respiratory symptoms.
293       Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low aff
294 enomic analysis of H. haemolyticus and NT H. influenzae, we identified genes unique to H. haemolyticu
295 ae, Entrobacter species, K. pnemoniae and H. influenzae were each accounted 6.5% isolation rate.
296                       Higher densities of H. influenzae were observed in both microbiologically confi
297 d Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant in control s
298 expressed in nontypeable (unencapsulated) H. influenzae, which did not bind FH, an increased FH affin
299 nfluenzae and its close relative Haemophilus influenzae, which is also commonly carried within the sa
300  A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity f

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top