コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 CN7/ZCN8 messenger RNA in florigen-producing mature leaf.
2 development affects stomatal density on the mature leaf.
3 ncrease vein and plasmodesmatal density in a mature leaf.
4 inhibition effects, including the wilting of mature leaves.
5 or the full repression of PCNA expression in mature leaves.
6 re negative in young leaves, and positive in mature leaves.
7 tion, but the transcript is less abundant in mature leaves.
8 eaves but increased transcription in healthy mature leaves.
9 nduced transcription of chloroplast genes in mature leaves.
10 treated, healthy potato organs or in wounded mature leaves.
11 n epidermal, mesophyll and vascular cells of mature leaves.
12 r from B supplied as a foliar application to mature leaves.
13 of the silique, pedicel and stem but not in mature leaves.
14 ver-expressed in developing primordia and in mature leaves.
15 equired to limit the spread of cell death in mature leaves.
16 plete or nearly complete DNA loss already in mature leaves.
17 the upper leaf side was gained in young and mature leaves.
18 increased in the vein and mesophyll of young mature leaves.
19 these processes were largely uncorrelated in mature leaves.
20 , but relatively little initiation occurs in mature leaves.
21 t in immature leaves but are greater than in mature leaves.
22 ed with the mass-based carboxylation rate of mature leaves.
23 he accumulation of neutral lipid droplets in mature leaves.
24 elopmental control and induces telomerase in mature leaves.
25 hydrates metabolism were highly expressed in mature leaves.
26 olated from the oil gland secretory cells of mature leaves.
27 ures on both adaxial and abaxial surfaces of mature leaves.
28 ndant transcript but was absent from healthy mature leaves.
29 the companion cells of the smallest veins of mature leaves.
30 immature leaves and was highly expressed in mature leaves.
31 expanding tissues, but substantially less in mature leaves.
32 n fruits, flowers and cotyledons, but not in mature leaves.
33 ieved the repression of the PCNA promoter in mature leaves.
34 tips, shoots, and floral organs, but not to mature leaves.
37 bidopsis microarrays with labeled cDNAs from mature leaf and shoot apices from several different spec
38 as a result of damage, increased >50-fold in mature leaves and decreased >1400-fold in immature leave
39 enerated a large data set of small RNAs from mature leaves and developing roots, shoots, and inflores
41 0-fold above wild type, whereas the level in mature leaves and other tissues is no greater than wild
43 ted at 45.3% of the total soluble protein in mature leaves and remained stable even in old bleached l
47 accumulated high levels of carbohydrates in mature leaves, and had a higher shoot biomass, contrasti
49 highly expressed in the collection phloem of mature leaves, and its function in phloem loading is wel
50 , these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in
56 ese processes do not occur in the absence of maturing leaves but can be restored by application of C(
57 y roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically loca
58 plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both
60 rol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates
61 is machinery returned to wild-type levels in mature leaves, consistent with the developmental down-re
64 1b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype a
68 t, which ensures the continual production of mature leaves following juvenile-adult transition, there
69 n nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana)
72 y of organs to produce AsA from GAL-L showed mature leaves have a 3- to 10-fold higher biosynthetic c
75 n increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates prot
79 ct DNA of any size in most chloroplasts from mature leaves, long before the onset of leaf senescence.
81 -off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated
82 stemically, with the irradiance perceived by mature leaves modulating stomatal development in young l
83 onfers expression only in the minor veins of mature leaves, not in the transport phloem of larger lea
84 abolites, and key inorganic ions in recently mature leaves of 45 dicotyledonous species at midafterno
93 e examined the hydraulic architecture of the mature leaves of the model species Populus tremula x alb
94 o temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) w
102 n with earlier studies, we show that loss of mature leaves results in decreased sugar levels and incr
105 ivities are the major source of variation in mature leaf RN under favorable controlled conditions.
107 d increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively
111 ilability or a defect in sucrose export from mature leaves, suggesting that isi1 mutant plants do not
112 significant impact on plant metabolism, with mature leaves tending to be more extensively affected th
113 bacco, superpromoter activity was greater in mature leaves than in young leaves, whereas in maize act
115 te in young tissues and geminivirus-infected mature leaves, the GRIK-SnRK1 cascade may function in a
116 n young leaves of A. bisulcatus, but in more mature leaves, the Se-methylseleno-Cys concentration is
117 titutive in roots and inducible by copper in mature leaves; the reverse pattern was observed for MT2.
118 PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cyt
119 days contained predominantly selenate in the mature leaf tissue at a concentration of 0.3-0.6 mM, whe
120 ature root and nodules but the reaction with mature leaf tissue was low compared to other tissues.
121 is a common target of MYB31 and MYB42 in the mature leaf tissues of maize, sorghum and rice, as evide
124 slocation of the foliar-applied 10B from the mature leaves to the meristematic tissues verifies that
126 ling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (
127 A differential response between young and mature leaves was also found in carbon metabolism, with
128 rformance of mannitol-accumulating calli and mature leaves was due to other stress-protective functio
131 the formation of elliptical leaf laminae in mature leaves, whereas overexpression of GTE6 resulted i
132 te to the repression of the PCNA promoter in mature leaves, whereas the E2F1 site counters the repres
133 s, siliques, and roots than in dry seeds and mature leaves, whereas the polyphosphoinositide-dependen
134 endophyte-mediated protection was greater in mature leaves, which bear less intrinsic defense against
135 PFD, in 2% and 21% oxygen, in developing and mature leaves, which differed greatly in R in darkness.
136 mesophyll but not in the epidermis of young mature leaves, while this was reversed for zinc distribu
137 n immature leaves, but slightly expressed in mature leaves, while Vfa4 was active in immature leaves
138 eached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully
139 and increased phospholipid concentrations in mature leaves, with concomitant changes in the expressio
140 nes by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。