戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  cytochrome P450BM3 (CYP102A1) from Bacillus megaterium.
2 illus subtilis can kill and prey on Bacillus megaterium.
3 130-fold) than Escherichia coli and Bacillus megaterium.
4 cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium.
5 he first rRNA operon to be sequenced from B. megaterium.
6 ed in flavocytochrome P450 BM3 from Bacillus megaterium.
7 tty acid hydroxylase P-450 BM3 from Bacillus megaterium.
8 eristic is similar to P450(BM-3) of Bacillus megaterium.
9 ed from the cytoplasmic membrane of Bacillus megaterium.
10 ta subunit from the obligate aerobe Bacillus megaterium.
11 A accumulation, as observed previously in B. megaterium.
12 ion of its presumptive homologue in Bacillus megaterium.
13  analysis of their coding region in Bacillus megaterium 11561.
14 ashion on cytochrome P450 BM-3 from Bacillus megaterium, a 119 kDa paramagnetic enzyme, using solid-s
15  Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a v
16 olation of a spoIIGA homologue from Bacillus megaterium, a species in which the cells are significant
17  of B. subtilis, Bacillus cereus or Bacillus megaterium, although germinated B. subtilis spores were
18  whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting tha
19 inner membrane of dormant spores of Bacillus megaterium and Bacillus subtilis is largely immobile, as
20 eceptors (GRs) in dormant spores of Bacillus megaterium and Bacillus subtilis species have small open
21 y triggered germination of decoated Bacillus megaterium and Bacillus subtilis spores lacking endogeno
22                           Spores of Bacillus megaterium and Bacillus subtilis strains were harvested
23 ucose, glycerol, or acetate compared with B. megaterium and E. coli.
24 se of citrate synthase enzymes from Bacillus megaterium and from eukaryotic cells but differed from t
25 inding to cytochrome P-450 BM3 from Bacillus megaterium and its constituent haem-containing and flavi
26 solates as food, we identified two, Bacillus megaterium and Pseudomonas mendocina, that enhanced resi
27  to be determined for the CbiXL from both B. megaterium and Synechocystis.
28 c cobalamin biosynthetic pathway in Bacillus megaterium and using homologously overproduced enzymes,
29 d superdormant spores of Bacillus cereus, B. megaterium, and B. subtilis isolated after optimal heat
30    Here we report structures of the Bacillus megaterium apoCcpA and a CcpA-(HPr-Ser46-P)-DNA complex.
31 layer orders inferred for B. subtilis and B. megaterium are consistent with measurements in the liter
32 the crystal structure of P(46) from Bacillus megaterium at 3.0 A resolution and the fact that P(46) m
33 lus cereus, Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis (including Bacillus niger
34     Among 12 microorganisms tested, Bacillus megaterium, Bacillus subtilis, Staphyloccocus aureus and
35 structed consisting of the E. coli or the B. megaterium beta subunit carrying the C-terminal 18% of t
36 yed the energy-coupling defect, while the B. megaterium beta subunit carrying the E. coli C-terminal
37 vidence of nutrient extraction from Bacillus megaterium by Bacillus subtilis.
38 illus subtilis can kill and prey on Bacillus megaterium by delivering a toxin and extracting nutrient
39     The E. coli beta subunit carrying the B. megaterium C-terminal region displayed the energy-coupli
40                                 The Bacillus megaterium cbiF, encoding the cobalt-precorrin-4 S-adeno
41 charide substrates using engineered Bacillus megaterium cytochrome P450 (P450(BM3)) demethylases that
42  heme and FMN-containing domains of Bacillus megaterium cytochrome P450BM-3 indicates that the proxim
43 yme was homologously produced in the host B. megaterium DSM319.
44 teria such as Bacillus subtilis and Bacillus megaterium for development of luminescent sensing system
45         We also show that TubR from Bacillus megaterium forms a helical superstructure resembling tha
46  has been linked to a plasmid-borne Bacillus megaterium gene cluster that contains four genes: oxsA,
47 s, the presence of anhydromuropeptides in B. megaterium germination exudates, which is indicative of
48 ntial amino acids by mutagenesis of Bacillus megaterium gpr.
49  Bacillus subtilis rapidly inhibits Bacillus megaterium growth by delivering the tRNase toxin WapA.
50 The Gram-positive aerobic bacterium Bacillus megaterium has a complete anaerobic pathway that contain
51  Wild-type CYP102 (P450(BM-3)) from Bacillus megaterium has low activity for the oxidation of the PAH
52 2A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period o
53 biochemical characterization of the Bacillus megaterium HD domain phosphohydrolase OxsA, involved in
54 gs early in spore germination, as did the B. megaterium homolog of the major B. subtilis chromosomal
55                                  In vivo, B. megaterium inactivates AHLs by a CYP102A1 dependent mech
56   The germination protease (GPR) of Bacillus megaterium initiates the degradation of small, acid-solu
57                                           B. megaterium is a commercially available, nonpathogenic ho
58                       P450BM-3 from Bacillus megaterium is a widely studied P450 cytochrome in which
59                                           B. megaterium is able to synthesize vitamin B(12) through a
60                                     Bacillus megaterium is deep-rooted in the Bacillus phylogeny, mak
61 widely studied cytochrome P450 from Bacillus megaterium, is capable of very efficient oxidation of AH
62 duction of the gerU/gerVB gene cluster to B. megaterium KM extends the range of germinants recognized
63 the six isolates were identified as Bacillus megaterium, one was identified as Bacillus cereus, and o
64  Purification of either recombinant Bacillus megaterium or Synechocystis CbiXL in Escherichia coli, w
65                                 The Bacillus megaterium P450 BM3 enzyme is a key model system, with s
66  of the cytochrome P450 enzyme from Bacillus megaterium (P450-BM3), a highly active His-ligated varia
67 es and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking sim
68                           Spores of Bacillus megaterium QM B1551 germinate in response to a number of
69 s a germinant molecule by spores of Bacillus megaterium QM B1551 has been examined.
70 proximately 53 kb pBM400 plasmid of Bacillus megaterium QM B1551 has been sequenced and characterized
71 examine the function in vivo of the Bacillus megaterium QM B1551 SleB and SleL proteins.
72 erences in germinant recognition of Bacillus megaterium QM B1551 spores containing the GerVB and/or G
73        This novel PHA synthase from Bacillus megaterium required PhaC (PhaC(Bm)) and PhaR (PhaR(Bm))
74 vating the pH of developing forespores of B. megaterium resulted in rapid utilization of the forespor
75 show that a soil bacterial isolate, Bacillus megaterium Sb5, promotes plant infection by Phytophthora
76                                           B. megaterium sleB cwlJ double mutant strains complemented
77  of either the N- or C-terminal domain of B. megaterium SleB is sufficient for initiation of cortex h
78                                           B. megaterium SleL appears to be associated with the epimer
79 in-frame fusion joining the 3' end of the B. megaterium spoIIE coding sequence to the 5' end of gfp,
80  exploited the physical dimensions of the B. megaterium sporangium, in conjunction with wide-field de
81 of the membrane, that influence the Bacillus megaterium spore germination response.
82 on, and these processes were increased in B. megaterium spores with a core pH of approximately 7.8.
83  and > or =20-fold lower in B. cereus and B. megaterium spores.
84 omplete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM
85 abilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1.
86        Stage I germinated spores of Bacillus megaterium that had slightly increased core water conten
87                                        In B. megaterium, the gvp region carries a cluster of 15 putat
88             In SASP-A and SASP-C of Bacillus megaterium two conserved glutamate residues, which form
89                     Tyrosinase from Bacillus megaterium (TyrBm) was previously used to modulate soy g
90 solanacearum, R. metallidurans, and Bacillus megaterium using chemical tests, a siderophore utilizati
91 soluble fatty acid hydroxylase from Bacillus megaterium utilizing tightly bound FAD and FMN cofactors
92 tative gas vesicle genes (gvp) from Bacillus megaterium VT1660 and their functional expression in Esc
93           Cytochrome P450 BM-3 from Bacillus megaterium was engineered using a combination of directe
94                     Whereas protection by B. megaterium was linked to impaired egg laying, correspond
95       A Gram-positive spore former (Bacillus megaterium) was distinguished by an abundant peak for cr
96 ant spores of Bacillus subtilis and Bacillus megaterium were isolated in 4 to 12% yields following ge
97  of spores of Bacillus subtilis and Bacillus megaterium were ring shaped.
98 es to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for no

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。