戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 obactam for P. aeruginosa and vancomycin for methicillin-resistant S. aureus).
2 methicillin-sensitive S. aureus) and RN450M (methicillin-resistant S. aureus).
3 wn CF pathogens, including P. aeruginosa and methicillin-resistant S. aureus.
4 al cellulitis caused by community-associated methicillin-resistant S. aureus.
5 enged with virulent methicillin-sensitive or methicillin-resistant S. aureus.
6 eus infections, particularly those involving methicillin-resistant S. aureus.
7 ion of the antibiotic-resistant phenotype in methicillin-resistant S. aureus.
8  was able to rapidly and accurately diagnose methicillin-resistant S. aureus.
9  of which is complicated by the emergence of methicillin-resistant S. aureus.
10 stinguishable from that of hospital-acquired methicillin-resistant S. aureus.
11 ibiotic susceptibility of community-acquired methicillin-resistant S. aureus.
12 e toxin 1, in both methicillin-sensitive and methicillin-resistant S. aureus.
13 ed bacteremia, right-sided endocarditis, and methicillin-resistant S. aureus.
14 lure in 2 patients with osteomyelitis due to methicillin-resistant S. aureus.
15 nt of nosocomial pneumonia in the absence of methicillin-resistant S. aureus.
16 l when there is extranasal colonization with methicillin-resistant S. aureus.
17 ratitis mediated by methicillin-sensitive or methicillin-resistant S. aureus.
18 od susceptibility against ciprofloxacin- and methicillin-resistant S. aureus.
19 ssay for PBP2a using membranes prepared form methicillin-resistant S. aureus.
20                    Those strains of epidemic methicillin-resistant S. aureus 16 (EMRSA-16) studied al
21 e patients (15%) (4 Staphylococcus aureus [3 methicillin-resistant S. aureus], 2 Stenotrophomonas mal
22 hylococcus aureus (11.5% vs 0.8%, P < .001); methicillin-resistant S. aureus (6.9% vs 0%, P = .003);
23  the clinical cure rates in ME patients with methicillin-resistant S. aureus ABSSSIs were 142 of 152
24                                           In methicillin-resistant S. aureus, addition of oxacillin d
25 e groups of BALB/c mice were inoculated with methicillin-resistant S. aureus American Type Culture Co
26 cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant
27                Of the 165 isolates, 117 were methicillin-resistant S. aureus and 48 were methicillin-
28 tant, prompting hospital-based screening for methicillin-resistant S. aureus and implementation of bo
29 he most potent MP against Y. enterocolitica, methicillin-resistant S. aureus and M. smegmatis was gal
30 d peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitiv
31 gainst early and mature biofilms produced by methicillin-resistant S. aureus and methicillin-suscepti
32 cific, and reproducible for the detection of methicillin-resistant S. aureus and yields complete resu
33 a DNA segment in the hypervariable region of methicillin-resistant S. aureus (and also similar to the
34 ty against extended-spectrum beta-lactamase, methicillin-resistant S. aureus, and carbapenem-resistan
35  of S. caprae, emphasize its similarities to methicillin-resistant S. aureus, and demonstrate its abi
36 ltidrug-resistant bacteria, Candida species, methicillin-resistant S. aureus, and P. aeruginosa would
37 al, hematologic, or hepatic), infection with methicillin-resistant S. aureus, and TTPs of </=12 h wer
38 organisms predominate, whereas anaerobes and methicillin-resistant S. aureus are significant predicto
39 addition, multidrug-resistant organisms like methicillin-resistant S.aureus are spreading from health
40 nds, including cephalosporins active against methicillin-resistant S. aureus, are in preclinical deve
41  surveillance culture can accurately exclude methicillin-resistant S. aureus as an etiology in most p
42 itivity (0.32; 95% CI, 0.20-0.48) to predict methicillin-resistant S. aureus-associated infections, w
43 ty/specificity of colonization in predicting methicillin-resistant S. aureus-associated infections.
44 ne fourth of patients who are colonized with methicillin-resistant S. aureus at admission to the ICU.
45 ients, 5.8-8.3% of patients are colonized by methicillin-resistant S. aureus at admission, with a sig
46 he mechanisms by which S. aureus - including methicillin-resistant S. aureus - avoids neutrophil-medi
47  aureus isolate occurred during treatment of methicillin-resistant S. aureus bacteremia and probable
48 esistant S. aureus infection and eliminating methicillin-resistant S. aureus bacteremia in the ICU wi
49  over the last 5 years, not a single case of methicillin-resistant S. aureus bacteremia was observed.
50 MIC) has been shown to affect the outcome of methicillin-resistant S. aureus bacteremia, and recent d
51  weeks of vancomycin treatment for recurrent methicillin-resistant S. aureus bacteremia.
52          Moreover, with community-associated methicillin-resistant S. aureus (CA MRSA) in a mouse mod
53            The dominant community-associated methicillin-resistant S. aureus (CA-MRSA) clone, USA300,
54                         Community-associated methicillin-resistant S. aureus (CA-MRSA) is the most co
55 sent in almost all USA300 community-acquired methicillin-resistant S. aureus (CA-MRSA) isolates.
56                      In community-associated methicillin-resistant S. aureus (CA-MRSA) strain MW2, no
57  isolates of S. aureus, community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 secrete
58 a DeltahysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain
59 ar peptides produced by community-associated methicillin-resistant S. aureus (CA-MRSA) with homology
60 iologically linked with community-associated methicillin-resistant S. aureus (CA-MRSA), has frequentl
61 to the USA-300 group of community-associated methicillin-resistant S. aureus (CA-MRSA).
62 t S. aureus (HA-MRSA) and community-acquired methicillin-resistant S. aureus (CA-MRSA).
63  the rapid emergence of community-associated methicillin-resistant S. aureus (CA-MRSA).
64                                              Methicillin-resistant S. aureus clinical specimens were
65  6538, Listeria monocytogenes ATCC 13932 and methicillin-resistant S. aureus clinical strains.
66 fected with Staphylococcus aureus, including methicillin-resistant S. aureus, clinical success was se
67 reen for GISA among 630 clinical isolates of methicillin-resistant S. aureus collected during 1997 fr
68 us aureus (hVISA) among clinical isolates of methicillin-resistant S. aureus collected from three hos
69     The sensitivity and specificity of prior methicillin-resistant S. aureus colonization as a predic
70                          In our study, prior methicillin-resistant S. aureus colonization as ascertai
71 ator-associated pneumonia and 54 (13.9%) had methicillin-resistant S. aureus colonization documented
72 f once weekly active surveillance culture of methicillin-resistant S. aureus colonization in predicti
73                                              Methicillin-resistant S. aureus colonization is associat
74           A significant per year increase in methicillin-resistant S. aureus colonization was also no
75  there has been an increase in the number of methicillin-resistant S. aureus community-acquired infec
76 onia and may decrease the need for empirical methicillin-resistant S. aureus coverage in patients wit
77 rulence of the emerging community-associated methicillin-resistant S. aureus depends on phenol-solubl
78          As the burden of community-acquired methicillin-resistant S. aureus disease continues to inc
79 isolates of interest including MDROs such as methicillin-resistant S. aureus, extended-spectrum beta-
80 s able to rapidly identify and differentiate methicillin-resistant S. aureus from methicillin-suscept
81 cus aureus (MRSA) strains: hospital-acquired methicillin resistant S. aureus (HA-MRSA) and community-
82 s aureus (CA-MRSA) and healthcare-associated methicillin-resistant S. aureus (HA-MRSA) strains and th
83                                              Methicillin-resistant S. aureus had the highest mortalit
84 gence and rapid spread of community-acquired methicillin-resistant S. aureus has prompted a change in
85  epidemiology and clinical manifestations of methicillin-resistant S. aureus have undergone important
86 s also changing with some community-acquired methicillin-resistant S. aureus having resistance patter
87  of 261 isolates form a multicenter study of methicillin-resistant S. aureus in New York City (NYC) w
88 vanDx, Woburn, MA, USA) for the detection of methicillin-resistant S. aureus in positive blood cultur
89 itially inappropriate antibiotic therapy for methicillin-resistant S. aureus increases the risk for m
90 tive strategy for reducing the prevalence of methicillin-resistant S. aureus infection and eliminatin
91 f associated infections during ICU stay, and methicillin-resistant S. aureus infection develops in on
92                            The prevalence of methicillin-resistant S. aureus infection fell from 2.66
93 jects were followed for the development of a methicillin-resistant S. aureus infection for 60 days or
94 r tuning the innate immune response to treat methicillin-resistant S. aureus infection in immunodefic
95  strategies could decrease the prevalence of methicillin-resistant S. aureus infection in the ICU, wi
96 lonization who are at very elevated risk for methicillin-resistant S. aureus infection.
97 ranofin was efficacious in a murine model of methicillin-resistant S. aureus infection.
98                In studies that included only methicillin-resistant S aureus infections (n = 7232), th
99 es are justified by associated reductions in methicillin-resistant S aureus infections and improvemen
100                In 17,738 evaluable patients, methicillin-resistant S. aureus infections (4.1%; 95% CI
101 tent use of beta-lactam antibiotics to treat methicillin-resistant S. aureus infections may contribut
102                                              Methicillin-resistant S. aureus infections occurred in s
103 techniques might reduce the burden of severe methicillin-resistant S. aureus infections.
104  by drug-resistant strains, designated MRSA (methicillin-resistant S. aureus), is associated with fai
105                 The culture of pus yielded a methicillin-resistant S. aureus isolate and the molecula
106 ain LAC, a well-studied community-associated methicillin-resistant S. aureus isolate.
107 y, we found that 56% of surveyed bloodstream methicillin-resistant S. aureus isolates (n = 148) at ou
108 h a set of 59 methicillin-susceptible and 44 methicillin-resistant S. aureus isolates from community-
109                                              Methicillin-resistant S. aureus isolates in this study s
110 rulent methicillin-susceptible S. aureus and methicillin-resistant S. aureus isolates now circulating
111                                 In contrast, methicillin-resistant S. aureus isolates were distribute
112 usceptible Staphylococcus aureus, 4/15 (27%) methicillin-resistant S. aureus isolates, 3/16 (19%) met
113  96% of the S. aureus isolates including all methicillin-resistant S. aureus isolates.
114  thicker extracellular matrixes than control methicillin-resistant S. aureus isolates.
115 ed the toxicity and adhesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that
116                  With the epidemic spread of methicillin-resistant S. aureus, many cases of staphyloc
117 organisms, both 0.25 microg/mL) than against methicillin-resistant S. aureus (MIC(50) and MIC(90), bo
118                               We report that methicillin resistant S. aureus (MRSA) is sensitized to
119 illinase resistant ss-lactams (methicillin), methicillin resistant S. aureus (MRSA) strains were iden
120                                              Methicillin-resistant S aureus (MRSA) accounted for 4 of
121 were nasal carriers, 70% of the carriers had methicillin-resistant S aureus (MRSA), 15% had methicill
122 and 142 cases (13.2%) of the infections were methicillin-resistant S aureus (MRSA).
123              A total of 39% of patients with methicillin-resistant S. aureus (MRSA) (n = 860) and 23%
124                         The regional rate of methicillin-resistant S. aureus (MRSA) abscesses may ref
125 FLP patterns were found among 85 isolates of methicillin-resistant S. aureus (MRSA) and 10 propagatin
126 icillin-sensitive S. aureus (MSSA), 207 were methicillin-resistant S. aureus (MRSA) and 27 were borde
127 t-extremity junction (MREJ) region among 907 methicillin-resistant S. aureus (MRSA) and 900 methicill
128 ential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infec
129 115 and E. coli O157:H7), clinical isolates (methicillin-resistant S. aureus (MRSA) and Candida albic
130 SSA), only one dimer was more potent against methicillin-resistant S. aureus (MRSA) and glycopeptide-
131 te signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-s
132 f skin infection to compare the virulence of methicillin-resistant S. aureus (MRSA) and methicillin-s
133  and set7) of 61 well-characterized clinical methicillin-resistant S. aureus (MRSA) and methicillin-s
134 ed with CAP, we calculated the prevalence of methicillin-resistant S. aureus (MRSA) and methicillin-s
135                                        Among methicillin-resistant S. aureus (MRSA) and methicillin-s
136 cal presentations and outcomes of lukF-PV(+) methicillin-resistant S. aureus (MRSA) and MSSA SSTIs we
137 e bacterium Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-re
138 nd Prevention (CDC) and others reported that methicillin-resistant S. aureus (MRSA) are significant c
139                          A high incidence of methicillin-resistant S. aureus (MRSA) bacteremia cases
140 reenings were done in parallel for 485 saved methicillin-resistant S. aureus (MRSA) blood isolates ac
141 hicillin-susceptible S. aureus (MSSA) and HO methicillin-resistant S. aureus (MRSA) BSIs for 2009-201
142        We determined the surface proteome of methicillin-resistant S. aureus (MRSA) clone usa300 deri
143 thwest Pacific clone [a community-associated methicillin-resistant S. aureus (MRSA) clone], and conte
144                      While the prevalence of methicillin-resistant S. aureus (MRSA) continues to incr
145 explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to
146 methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) from 300 positive
147 mpared recovery of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from nasal and gr
148  were infected with an isolate of the USA300 methicillin-resistant S. aureus (MRSA) genetic backgroun
149 nly two cases of empyema necessitatis due to methicillin-resistant S. aureus (MRSA) have been reporte
150                          Virulent strains of methicillin-resistant S. aureus (MRSA) have emerged in t
151 ic basis of agr dysfunction among nosocomial methicillin-resistant S. aureus (MRSA) in an area of MRS
152 llin-sensitive S. aureus, with expansion for methicillin-resistant S. aureus (MRSA) in cases of cellu
153 ed B and T cell-dependent protection against methicillin-resistant S. aureus (MRSA) in mice.
154 ole in Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) induced peritonit
155                                     Although methicillin-resistant S. aureus (MRSA) infection has bec
156  that are used or their ability to eliminate methicillin-resistant S. aureus (MRSA) infection.
157 7 cells compared with nondiabetic mice after methicillin-resistant S. aureus (MRSA) infection.
158  Staphylococcus aureus (COSA) infections and methicillin-resistant S. aureus (MRSA) infections in 4 C
159  associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displ
160 usceptible S. aureus (MSSA) and 73 (17%) had methicillin-resistant S. aureus (MRSA) infections.
161 le (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections.
162  a multinational collection of isolates from methicillin-resistant S. aureus (MRSA) infective endocar
163                                              Methicillin-resistant S. aureus (MRSA) is a leading heal
164                                              Methicillin-resistant S. aureus (MRSA) is a potential bl
165  an S. aureus infection were infected with a methicillin-resistant S. aureus (MRSA) isolate.
166 n readily differentiated EMRSA-15 from other methicillin-resistant S. aureus (MRSA) isolates and also
167 with the most prevalent allelic profile were methicillin-resistant S. aureus (MRSA) isolates and had
168 susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates recovere
169 evalent clone of 12 geographically dispersed methicillin-resistant S. aureus (MRSA) isolates was iden
170                                 All 44 (49%) methicillin-resistant S. aureus (MRSA) isolates were fro
171                The literature has shown that methicillin-resistant S. aureus (MRSA) isolates which ar
172 1 December 2006), performed SCCmec typing of methicillin-resistant S. aureus (MRSA) isolates, and str
173 t 250 S. aureus strains tested including 120 methicillin-resistant S. aureus (MRSA) isolates.
174         MLVA did not differentiate community methicillin-resistant S. aureus (MRSA) lineages (USA300,
175                  Vancomycin failed to reduce methicillin-resistant S. aureus (MRSA) or methicillin-su
176 preoperative nares screens were positive for methicillin-resistant S. aureus (MRSA) or methicillin-su
177  Staphylococcus aureus (MSSA) organisms, 154 methicillin-resistant S. aureus (MRSA) organisms, and 20
178 ence determinant that may potentially impact methicillin-resistant S. aureus (MRSA) persistence in su
179                                              Methicillin-resistant S. aureus (MRSA) poses a significa
180 re, we studied a well-characterized clinical methicillin-resistant S. aureus (MRSA) strain (MW2), its
181 wed that the pknB gene (also called stk1) of methicillin-resistant S. aureus (MRSA) strain COL and th
182 tant S. aureus (VRSA) strain HIP11714 to the methicillin-resistant S. aureus (MRSA) strain COL for wh
183                   Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 rev
184 eta-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not i
185                            The common USA300 methicillin-resistant S. aureus (MRSA) strains express a
186 We also demonstrate that clinically relevant methicillin-resistant S. aureus (MRSA) strains respond t
187 f recurring SSSI due to S. aureus, including methicillin-resistant S. aureus (MRSA) strains, despite
188 f arlRS does not play a role in autolysis of methicillin-resistant S. aureus (MRSA) strains, such as
189 ecurring SSSI due to S. aureus, particularly methicillin-resistant S. aureus (MRSA) strains, suggests
190 bidity are attributed to the rapid spread of methicillin-resistant S. aureus (MRSA) strains, which ar
191 nt mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to s
192 he host response to pulmonary infection with methicillin-resistant S. aureus (MRSA) USA300.
193                                              Methicillin-resistant S. aureus (MRSA) was endemic in ho
194  the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered fro
195 FLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the r
196 trated that Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), and coagulase-ne
197 ively potentiates beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA), and re-sensitize
198  a dramatic increase in community-associated methicillin-resistant S. aureus (MRSA), but recent repor
199 ection with Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is a serious con
200  microbes was tested with the same approach: methicillin-resistant S. aureus (MRSA), multidrug-resist
201 nasal swab which was analyzed for S. aureus, methicillin-resistant S. aureus (MRSA), multidrug-resist
202 sence of Staphylococcus aureus, specifically methicillin-resistant S. aureus (MRSA), on retail meat p
203 en, Staphylococcus aureus, and in particular methicillin-resistant S. aureus (MRSA), one of the leadi
204        MICs < 1 mug/mL were achieved against methicillin-resistant S. aureus (MRSA), S. pneumoniae, a
205  of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal B
206 er baumannii (PDRAB), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Streptococcus py
207     Outcomes included carriage of S. aureus, methicillin-resistant S. aureus (MRSA), tetracycline-res
208 al tests for the detection of mecC-harboring methicillin-resistant S. aureus (MRSA), which failed to
209 /449 [66.4%]), of which 74.8% (223/298) were methicillin-resistant S. aureus (MRSA).
210 ence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA).
211 ents biofilm formation by S. epidermidis and methicillin-resistant S. aureus (MRSA).
212 ics, with the resultant strain designated as methicillin-resistant S. aureus (MRSA).
213 se infections caused by community-associated methicillin-resistant S. aureus (MRSA).
214 ed the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA).
215 y 16 (6.3%) of the isolates were found to be methicillin-resistant S. aureus (MRSA).
216  the most frequent invasive infection due to methicillin-resistant S. aureus (MRSA).
217 methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA).
218 ainst S. aureus TMK and 2 mug/mL MIC against methicillin-resistant S. aureus (MRSA).
219 n and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA).
220 dmission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA).
221 concomitantly colonized with virulent USA300 methicillin-resistant S. aureus (MRSA).
222 ic wounds such as P.aeruginosa, S.aureus and Methicillin-resistant S.aureus (MRSA) are mediated via t
223                 A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicill
224 hundred seventy-nine S. aureus isolates (125 methicillin-resistant S. aureus [MRSA] and 254 methicill
225 occus aureus collected from U.S. (53.8% were methicillin-resistant S. aureus [MRSA]) and Canadian (46
226 e emergence of antibiotic-resistant strains (methicillin-resistant S. aureus [MRSA]) has prompted res
227 141 methicillin-susceptible S. aureus and 89 methicillin-resistant S. aureus [MRSA]) were analyzed.
228 .1%) had zone sizes of </=17 mm (all 105 had methicillin-resistant S. aureus [MRSA]), 18 (6.5%) had z
229 ptible Staphylococcus aureus [MSSA] and 6.3% methicillin-resistant S. aureus [MRSA]), and hand carria
230 entiates between methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA, respecti
231  the agr regulon in the community-associated methicillin-resistant S. aureus MW2 considerably differe
232                                              Methicillin-resistant S. aureus nasal carriage had a hig
233 ation vs. one of 171 (0.6%) subjects without methicillin-resistant S. aureus nasal colonization (p <
234 patients provided an estimated prevalence of methicillin-resistant S. aureus nasal colonization at ad
235  of interest were the prevalence estimate of methicillin-resistant S. aureus nasal colonization at ad
236 ccurred in seven of 29 (24.1%) subjects with methicillin-resistant S. aureus nasal colonization vs. o
237  recovered in 15 of 29 (51.7%) subjects with methicillin-resistant S. aureus nasal colonization vs. t
238 n be used to rapidly recognize patients with methicillin-resistant S. aureus nasal colonization who a
239 ng drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization.
240 Overall 29 of 200 (14.5%) were found to have methicillin-resistant S. aureus nasal colonization.
241 l colonization vs. two of 171 (1.2%) without methicillin-resistant S. aureus nasal colonization.
242 pated transfer of vancomycin resistance to a methicillin-resistant S. aureus occurred in vivo by inte
243                                              Methicillin-resistant S. aureus occurred with similar fr
244 CAP was associated with an increased risk of methicillin-resistant S. aureus (odds ratio [OR], 4.72;
245 n-susceptible S. aureus was detected but not methicillin-resistant S. aureus or S. pyogenes from cell
246 nterval [CI], 2.24 to 92.55), infection with methicillin-resistant S. aureus (OR, 9.3; 95% CI, 1.45 t
247  XpressFISH assay, which detected 209 of 211 methicillin-resistant S. aureus organisms (sensitivity,
248 ceptible to oxacillin (oxacillin-susceptible methicillin-resistant S. aureus [OS-MRSA]).
249  specialized ICUs populations and reports on methicillin-resistant S. aureus outbreaks were excluded.
250 phylococcus aureus (p = 0.007), particularly methicillin-resistant S. aureus (p < 0.0001).
251  weeks of vancomycin treatment for recurrent methicillin-resistant S. aureus peritonitis associated w
252  innate immune response in a murine model of methicillin-resistant S. aureus pneumonia.
253 tivity permits detection of genomic DNA from methicillin-resistant S. aureus positive blood cultures
254 s study calculates the cost-effectiveness of methicillin-resistant S aureus prevention strategies and
255  to determine if the implementation costs of methicillin-resistant S aureus prevention strategies are
256 itially inappropriate antibiotic therapy for methicillin-resistant S. aureus prolongs length of stay
257 showed a genetic similarity to PVL-positive, methicillin-resistant S. aureus (PVL-MRSA) strains, alth
258  episodes with 90-day follow-up, excluding 5 methicillin-resistant S. aureus SAB cases.
259 d "sporadic." The most prevalent lineage was methicillin-resistant S. aureus (SAL 4).
260 develop a murine model of community-acquired methicillin-resistant S. aureus SSTI (CA-MRSA SSTI) that
261 tailed description of a community-associated methicillin-resistant S. aureus ST80 orbital cellulitis
262 ntified patients admitted with nonnosocomial methicillin-resistant S. aureus sterile-site infections
263 itially inappropriate antibiotic therapy for methicillin-resistant S. aureus sterile-site infections
264                                              Methicillin-resistant S. aureus strain 301 (MRSA 301) or
265                A USA300 community-associated methicillin-resistant S. aureus strain deficient in Rot
266              Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipita
267 n of the pbp2 gene did not block growth of a methicillin-resistant S. aureus strain expressing the ex
268 re found to be active against vancomycin and methicillin-resistant S. aureus strain with appreciable
269                                              Methicillin-resistant S aureus strains concordant with i
270 l health threat because of the prevalence of methicillin-resistant S. aureus strains (MRSA).
271 hyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe nec
272                                         Most methicillin-resistant S. aureus strains causing bacterem
273 ain MW2 (USA400 lineage) and other community methicillin-resistant S. aureus strains most commonly ca
274 ar effects of PVL using community-associated methicillin-resistant S. aureus strains, we found no sig
275 athogenicity factors of community-associated methicillin-resistant S. aureus strains.
276                  Newer agents active against methicillin-resistant S. aureus such as linezolid have b
277 m the nares of 6 of 32 infants surveyed in a methicillin-resistant S. aureus surveillance program, an
278  This review of the changing epidemiology of methicillin-resistant S. aureus, the emergence of vancom
279 on, the tibias of rabbits were infected with methicillin-resistant S. aureus to produce chronic osteo
280                                              Methicillin-resistant S. aureus treated with plicatamide
281                           Community-acquired methicillin-resistant S. aureus used to be predominantly
282 tibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate
283 nt S. aureus colonization as a predictor for methicillin-resistant S. aureus ventilator-associated pn
284 olonization in predicting the development of methicillin-resistant S. aureus ventilator-associated pn
285           Of the 388 patients, 37 (9.5%) had methicillin-resistant S. aureus ventilator-associated pn
286                                              Methicillin-resistant S aureus was recovered from sample
287 After we controlled for confounding factors, methicillin-resistant S. aureus was associated with the
288                        A clinical isolate of methicillin-resistant S. aureus was killed by platelets
289                                              Methicillin-resistant S. aureus was not found by culture
290                           Nasal cultures for methicillin-resistant S. aureus were performed on all su
291 reus, methicillin-susceptible S. aureus, and methicillin-resistant S. aureus with sensitivities of 10

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top