コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 indole nitrogen in Trp during its attack on methylcobalamin.
2 pose a methyl group on substrate with one on methylcobalamin.
3 aine and cob(I)alamin to dimethylglycine and methylcobalamin.
4 and the methylation of homocysteine by free methylcobalamin.
5 o homocysteine via the enzyme-bound cofactor methylcobalamin.
6 how a protein can control the reactivity of methylcobalamin.
7 stic children were treated with 75 microg/kg methylcobalamin (2 times/wk) and 400 microg folinic acid
8 ine and tetrahydrofolate and is dependent on methylcobalamin, a derivative of vitamin B12, for activi
10 tic turnover numbers for the dealkylation of methylcobalamin and 5'-deoxyadenosylcobalamin by MMACHC
11 assimilation into the active cofactor forms, methylcobalamin and 5'-deoxyadenosylcobalamin, and is bo
13 le, the enzyme alternates between the active methylcobalamin and cob(I)alamin forms of the enzyme.
14 methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form
15 that targeted nutritional intervention with methylcobalamin and folinic acid may be of clinical bene
16 not treatment with the metabolic precursors, methylcobalamin and folinic acid, would improve plasma c
17 me must alternately stabilize six-coordinate methylcobalamin and four-coordinate cob(I)alamin oxidati
18 min with dimethylsulfide, yielding equimolar methylcobalamin and methanethiol in an endergonic reacti
19 ponsible for binding of the prosthetic group methylcobalamin, and amino acids 897-1227 are involved i
21 ions included vitamin B12, the B12 coenzyme, methylcobalamin, and dicyanocobyrinic acid heptamethyles
22 , in a reaction that is first-order in added methylcobalamin, and we have confirmed this observation
23 olism, the organocobalamins coenzyme B12 and methylcobalamin, are highly photolabile, as are other al
24 talyze methylation of homocysteine with free methylcobalamin as the methyl donor, in a reaction that
25 leotide substituent of the corrin ring; when methylcobalamin binds to methionine synthase, the ligand
27 ond-order rate constant for demethylation of methylcobalamin by Hcy is elevated 60-fold and that for
28 n polyacrylamide gels revealed an additional methylcobalamin:coenzyme M (methylcobalamin:CoM) methylt
29 ferase composed of two polypeptides, MtsA (a methylcobalamin:coenzyme M methyltransferase) and MtsB (
32 folate to the cob(I)alamin cofactor, forming methylcobalamin cofactor and tetrahydrofolate prior to t
33 In the E. coli enzyme, the lower face of the methylcobalamin cofactor is coordinated by histidine 759
34 the enzyme transfers a methyl group from the methylcobalamin cofactor to homocysteine, generating cob
37 to the N termini of the A and M isozymes of methylcobalamin:CoM methyltransferase (methyltransferase
39 ent molecular mass of 48 kDa which possessed methylcobalamin:CoM methyltransferase activity was detec
40 ed an additional methylcobalamin:coenzyme M (methylcobalamin:CoM) methyltransferase present in cells
41 f cob(I)alamin during turnover, to an active methylcobalamin-containing form requires a reductive met
42 cofactor for adenosylcobalamin-dependent and methylcobalamin-dependent enzymes, it plays a crucial ro
44 adenosylcobalamin-dependent isomerases, the methylcobalamin-dependent methyltransferases, and the de
45 oA was formed in reactions with CoA, CO, and methylcobalamin, directly demonstrating C-C bond activat
47 in can also be generated by demethylation of methylcobalamin enzyme by homocysteine; it was not known
48 initially in formation of a five-coordinate methylcobalamin enzyme that slowly decays to the active
49 atalyzes the transfer of a methyl group from methylcobalamin enzyme to homocysteine, generating methi
53 L-methylfolate, pyridoxal 5'-phosphate, and methylcobalamin for management of endothelial dysfunctio
57 The lower axial ligand to the cobalt in free methylcobalamin is the dimethylbenzimidazole nucleotide
58 hydrofolate to homocysteine via the cofactor methylcobalamin, is one of the two established mammalian
59 electrochemical (EC) reduction mechanism of methylcobalamin (Me-Cbl) in a mixed DMF/MeOH solvent in
62 l activity of adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) is the Co-C bond cleavage step.
64 [H2O-Cbl], adenosylcobalamin [Ado-Cbl], and methylcobalamin [MeCbl]), only the H2O-Cbl combined with
67 by heterolytic cleavage of the Co-C bond in methylcobalamin or the two-electron reduction of vitamin
69 ation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, trigg
71 djacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and i
73 etely abolish methyl transfer from exogenous methylcobalamin to homocysteine but do not affect methyl
74 protein catalyzes methyl transfer from free methylcobalamin to homocysteine but not from methyltetra
75 he ability to transfer the methyl group from methylcobalamin to homocysteine, suggesting that zinc is
76 es the transfer of a methyl group from bound methylcobalamin to homocysteine, yielding enzyme-bound c
78 r ligand dimethylbenzimidazole on binding of methylcobalamin to methionine synthase, is dissociated f
79 cycle, the cobalamin-binding domain carries methylcobalamin to the homocysteine (Hcy) domain to form
81 ention trial with folinic acid, betaine, and methylcobalamin was initiated in a subset of the autisti
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。