コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 alyses pointing toward an 18-chain cellulose microfibril.
2 rdered lattice constituting the core of each microfibril.
3 of type-I collagen within the context of the microfibril.
4 cular weight component of the fibrillin-rich microfibril.
5 n the culture medium and no association with microfibrils.
6 of obstacles, like disintegration of chitin microfibrils.
7 extracellular matrix protein associated with microfibrils.
8 the hemicelluloses that tether to cellulose microfibrils.
9 AGP1) is a component of extracellular matrix microfibrils.
10 ng assays, rVN bound to isolated nondegraded microfibrils.
11 les and the orientation of nascent cellulose microfibrils.
12 g of (1-->4)-beta-glucan chains in cellulose microfibrils.
13 al interactions to enhance HA recruitment to microfibrils.
14 lin-1, the main constituent of extracellular microfibrils.
15 ically in mediating the recruitment of HA to microfibrils.
16 tories to orient newly synthesized cellulose microfibrils.
17 in limited regions of tight contact between microfibrils.
18 celluloses via binding to emerging cellulose microfibrils.
19 come into direct contact with the cellulose microfibrils.
20 egulate the fibrillin isoform composition of microfibrils.
21 tion of mutant fibrillin-1 incorporated into microfibrils.
22 lice variant was able to assemble into short microfibrils.
23 is a ubiquitous component of fibrillin-rich microfibrils.
24 thick fibrils and spots with densely packed microfibrils.
25 ll adhesion and as a structural component of microfibrils.
26 these proteins have been immunolocalized to microfibrils.
27 atial scale of molecular connections between microfibrils.
28 LTBP-1 and LTBP-4 are not incorporated into microfibrils.
29 -1, LTBP-1, and LTBP-4 are incorporated into microfibrils.
30 bserve alterations in the lateral packing of microfibrils.
31 ofibril that interdigitates with neighboring microfibrils.
32 olecule to align and to form well-structured microfibrils.
33 accumulates in the narrow spaces between the microfibrils.
34 be visualized in the context of the stiffer microfibrils.
35 ndle individual glucan chains into cellulose microfibrils.
36 ellulosic polysaccharide, binds to cellulose microfibrils.
37 iate the adsorption of mucilage to cellulose microfibrils.
38 r xylan to the hydrophilic face of cellulose microfibrils.
39 rs, which are then secreted and assembled to microfibrils.
40 motetramers that are incorporated into mixed microfibrils.
41 ond to the hydrophilic surfaces of cellulose microfibrils.
42 zed the assembly of these into tetramers and microfibrils.
43 le, by partially dissolving silk fibers into microfibrils.
44 bule (CMT)-mediated orientation of cellulose microfibrils.
45 of certain matrix polymers within cellulose microfibrils.
46 he pectin backbone, lodged between cellulose microfibrils.
47 es containing LTBP-3 with mutant fibrillin-1 microfibrils.
48 f the 10-12 nm diameter extracellular matrix microfibrils.
50 on three different models of Ibeta cellulose microfibrils, 18, 24, and 36 chains, to investigate thei
51 thickening and the orientation of cellulose microfibrils [2], our understanding of the composition o
53 lulose chains bridging continuously from one microfibril aggregate (macrofibril) to the next provide
54 from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy rev
55 lastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, p
57 ulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall.
58 d eight molecules in cross-section through a microfibril, allowing us to understand microfibril organ
59 cifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome.
60 tween a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surfac
62 ment increased intracutaneous fibrillin-rich microfibril and collagen III deposition and decreased ma
63 d in vertebrates and have important roles in microfibril and elastic fiber structure, homeostasis, an
67 fibrillin-2 epitopes are masked in postnatal microfibrils and can be revealed by enzymatic digestion
68 creating a dense matrix that binds cellulose microfibrils and crosslinks other wall components, there
69 Thus, alteration of MAGP-2, a component of microfibrils and elastic fibers, appears as an initiatin
70 e are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including d
73 for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSC
74 , xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall e
75 polymers form an inner core within postnatal microfibrils and that microfibril structure evolves as g
76 length or quantity of a subset of cellulose microfibrils and that this, in turn, alters microfibril
77 s made between the interaction of individual microfibrils and the change in their suprafibrillar cohe
78 ) C2a chain do not assemble efficiently into microfibrils and there is a severe collagen VI deficienc
79 rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a
80 , our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic
81 ggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rod
82 association by coacervation, deposition onto microfibrils, and cross-linking to form elastic fibers.
83 e ECM collagen into triple-helical monomers, microfibrils, and macrofibrils, little or no inhibition
84 n that specifies self-assembly into fibrils, microfibrils, and networks that have diverse functions i
85 omain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicat
86 es in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for eith
87 l associations with wood density, stiffness, microfibril angle and ring width in a population of 1694
88 c gravity, percentage of latewood, earlywood microfibril angle, and wood chemistry (lignin and cellul
89 between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season
90 possible role for Ca(2+) in stabilizing the microfibril architecture and moderating extension in viv
92 ctron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientati
93 imary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facil
100 r, these findings identify the extracellular microfibrils as critical regulators of bone formation th
101 brillin strengthens the concept of fibrillin microfibrils as extracellular scaffolds integrating cell
104 there were differences in the secretion and microfibril assembly profiles of fibrillin-1 variants co
110 sualized using antibodies to Fbn1, Fbn2, and microfibril-associated glycoprotein-1 (Magp1) in conjunc
114 racterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously
116 ely our data demonstrated that extracellular microfibrils balance local catabolic and anabolic signal
117 alytic domain (CD) of Cel7B with a cellulose microfibril before and after complexing a glucan chain i
118 ndings suggest that ADAMTS10 participates in microfibril biogenesis rather than in fibrillin-1 turnov
120 otein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL
123 syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations als
124 so known as Magp2), which encodes an elastin-microfibril bridging factor, is upregulated in Fgfr3;4 m
126 brils merge into and out of short regions of microfibril bundles, thereby forming a reticulated netwo
127 e, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conform
128 g the 20- to 40-nm spacing between cellulose microfibrils, but they do implicate a minor xyloglucan c
129 he AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these
130 that fibrillin-1, which forms extracellular microfibrils, can regulate the bioavailability of transf
131 major structural components of extracellular microfibrils, cause pleiotropic manifestations in Marfan
132 icellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mec
133 coupling networks in Cel7B-glucan and Cel7B-microfibril complexes reveal a previously unresolved all
135 Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics
137 e-digested microfibrils, guanidine-extracted microfibrils contained all fibrillin-1 epitopes recogniz
138 n of how many chains an elementary cellulose microfibril contains is critical to understanding the mo
140 ll stability of the crystalline structure of microfibrils could facilitate the design of more effecti
143 rid domain) in fibrillin-1 results in stable microfibrils, demonstrating that fibrillin-1 molecules a
147 Elastic tissues rich in MAGP-1-containing microfibrils develop normally and show normal function.
148 , the structural components of extracellular microfibrils, differentially regulate TGF-beta and bone
150 -ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional c
152 ng alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch.
157 , linkage analysis, and imaging of cellulose microfibril formation using transmission electron micros
160 ng estimates of the diameter of the smallest microfibril formed from the beta-1,4 glucan chains synth
161 rculating fragments of fibrillin-1, or other microfibril fragments, are associated with TAA and disse
162 diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted t
163 y walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans, and mixed-linkage
165 pe II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic
169 hat control the interactions among cellulose microfibrils, hemicelluloses, and lignin are still not w
170 x-ray diffraction structure of the collagen microfibril in situ, indicating the existence of domains
171 It colocalizes to fibrillin-1 containing microfibrils in cultured fibroblasts and suppresses fibr
172 scopy visualized ultrastructurally different microfibrils in Fbn1 null compared with control cell cul
177 py is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm t
179 wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid a
185 iable, but still small, surface of cellulose microfibrils in the onion wall is tightly bound with ext
186 ed to function as a tether between cellulose microfibrils in the primary cell wall, limiting cell enl
189 uitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent mann
191 ppresses fibrillin-2 (FBN2) incorporation in microfibrils, in part by transcriptional downregulation
192 he least characterized member of the elastin microfibril interface-located protein (EMILIN)/Multimeri
193 to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a me
195 cellulose microfibril surfaces and to tether microfibrils into a load-bearing network, thereby playin
196 fibrillar networks with focal aggregation of microfibrils into PEX-like fibrils on stimulation with T
197 ential physical interactions that stabilizes microfibrils is a network of hydrogen (H) bonds: both in
198 reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant
200 osition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized ce
201 The interaction between xylan and cellulose microfibrils is important for secondary cell wall proper
205 llulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains.
206 lecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated.
208 ly deposited wall surface showed that single microfibrils merge into and out of short regions of micr
210 TBP-2 in culture medium not only rescued the microfibril meshwork formation in LTBP2-suppressed cilia
212 illin molecules are highly folded within the microfibrils; more importantly, the connection is made b
213 its near-native state, with implications for microfibrils motions in different lamellae during uniaxi
216 ntation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of m
218 inding proteins fibrillins are components of microfibril networks, and both interact with members of
219 lanases capable of degrading the crystalline microfibrils of 1,3-xylan that reinforce the cell walls
223 nase-digested cell walls revealed an altered microfibril organization but did not yield clear evidenc
227 layers characterized by transverse cellulose microfibril orientation in both normal and compression w
229 wood cell walls, including lignification and microfibril orientation, may be mediated by changes in t
231 0 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lam
235 tide blocks the assembly of fibrillin-1 into microfibrils produced by dermal fibroblasts; and (iii) t
237 N1 (encoding fibrillin-1, which forms tissue microfibrils), respectively, yet they are clinically ind
238 ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that compri
240 ations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensil
241 ith ADAMTS10 mutations deposited fibrillin-1 microfibrils sparsely compared with unaffected control c
242 II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are
244 e not required to be in perfect register for microfibril structure and function and that the first hy
245 A central question concerns the mechanism of microfibril structure and how this is linked to the cata
246 l model system for the study of primary wall microfibril structure because its microfibrils are orien
247 ns unclear whether modification of cellulose microfibril structure can be achieved genetically, which
248 core within postnatal microfibrils and that microfibril structure evolves as growth and development
249 CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and sugg
250 microfibrils and that this, in turn, alters microfibril structure in the primary cell wall resulting
252 , these results suggest that perturbation of microfibril structure may underlie one of the major feat
253 er, while organization of the CSC determines microfibril structure, how individual CESA proteins are
254 1 cause disorders through primary effects on microfibril structure, two different mutations were gene
257 ypothesized to bind extensively to cellulose microfibril surfaces and to tether microfibrils into a l
259 and -5, are components of the elastic fiber/microfibril system and are implicated in the formation a
261 a supertwisted (discontinuous) right-handed microfibril that interdigitates with neighboring microfi
262 extracellular glycoprotein fibrillin-1 forms microfibrils that act as the template for elastic fibers
263 omposite material containing stiff cellulose microfibrils that are embedded within a pectin matrix an
264 hains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibri
265 ry elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally a
266 glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-loc
268 reflection of helicoidally stacked cellulose microfibrils that form multilayers in the cell walls of
270 large matrix polymers retained by cellulose microfibrils that were specifically found in tension woo
272 on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix
273 s synthesize elastin and other components of microfibrils; these may serve structural roles, providin
275 pose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to en
276 ily of genes responsible for the assembly of microfibrils throughout development, and is essential fo
279 h was used to circumvent the insolubility of microfibrils to determine the role of fibrillin-2 in pos
280 of steps involved in the digestion of Abeta microfibrils to nanospheres or nanofilaments by protease
282 ficiently "glued" the structural elements of microfibrils together, producing a unique inorganic-orga
283 the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stoma
284 age thickness and RMS roughness of cellulose microfibrils upon exposure to cellulolytic enzymes, prov
285 ich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially ori
286 pectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a
287 ctron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-c
291 guanidine-extracted and collagenase-digested microfibrils were subjected to extensive digestion by cr
293 llin-1 from being secreted or assembled into microfibrils, whereas MFS-associated substitutions in th
294 re viable models for an elementary cellulose microfibril, which also correlates with recent scatterin
295 lulose chains attached to adjacent cellulose microfibrils, which are disrupted above a threshold leve
296 ve pectin entrapment in or between cellulose microfibrils, which cannot be mimicked by in vitro bindi
298 this protease or its connection to fibrillin microfibrils, whose major component, fibrillin-1, is gen
299 Transmission electron microscopy imaging of microfibrils with a range of periodicities between 56 an
300 mulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder
301 of cellulose chains and their assembly into microfibrils within the cell walls of land plants and th
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。