コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ting increased calcineurin/NFAT signaling in myocyte hypertrophy.
2 ntricular myocytes and inducing compensatory myocyte hypertrophy.
3 een implicated in the development of cardiac myocyte hypertrophy.
4 II (Ang II) triggers cell death and promotes myocyte hypertrophy.
5 he mouse cardiac myocyte and perturbation of myocyte hypertrophy.
6 of the signaling pathway leading to cardiac myocyte hypertrophy.
7 orm was involved in myotrophin-induced adult myocyte hypertrophy.
8 nlargement and hyperchromasia, indicative of myocyte hypertrophy.
9 of the most distinctive features of cardiac myocyte hypertrophy.
10 ates, but JNK suppresses, the development of myocyte hypertrophy.
11 ess the role of this small GTPase in cardiac myocyte hypertrophy.
12 essential for 8,12-iso-iPF2alpha-III-induced myocyte hypertrophy.
13 tivity is required for p70S6K activation and myocyte hypertrophy.
14 36 weeks and was associated with significant myocyte hypertrophy.
15 her capillary density, and less compensatory myocyte hypertrophy.
16 t to adult cardiac fibroblasts that promoted myocyte hypertrophy.
17 rt responds to pathological overload through myocyte hypertrophy.
18 of cAMP second messenger controlling cardiac myocyte hypertrophy.
19 Integrins appear to be necessary for cardiac myocyte hypertrophy.
20 titial fibrosis, endothelial dysfunction and myocyte hypertrophy.
21 lts in a myopathy characterized by organ and myocyte hypertrophy.
22 Rac1 mediate hypertrophic signals in cardiac myocyte hypertrophy.
23 fficient to trigger neonatal rat ventricular myocyte hypertrophy.
24 ve been linked to the development of cardiac myocyte hypertrophy.
25 oliferation, increased apoptosis and cardiac myocyte hypertrophy.
26 es, and stimulation of protein synthesis and myocyte hypertrophy.
27 decreased AngII-induced O2*- production and myocyte hypertrophy.
28 tor tyrosine kinase Src in signaling cardiac myocyte hypertrophy.
29 and gene expression associated with cardiac myocyte hypertrophy.
32 lecule, referred to as pyridine activator of myocyte hypertrophy, acts as a selective agonist for 5-H
33 r this pathway in the development of cardiac myocyte hypertrophy, alpha1-adrenergic stimulation simil
34 lass I and II HDACs primarily causes cardiac myocyte hypertrophy and also induces modest cell death.
35 AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expressio
41 The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitia
42 onse to sustained pressure overload involves myocyte hypertrophy and dysfunction along with interstit
43 hways by which sarcomeric mutations engender myocyte hypertrophy and electrophysiological abnormaliti
44 pha develop cardiomyopathy, characterized by myocyte hypertrophy and extensive myocardial fibrosis.
47 topathological examination demonstrated that myocyte hypertrophy and fibrosis were already present in
50 roach for the specific inhibition of cardiac myocyte hypertrophy and for the development of novel str
53 prevented phenylephrine induced pathological myocyte hypertrophy and hypertrophic marker expression i
54 ion of stretch response proteins, attenuates myocyte hypertrophy and improves SR calcium cycling.
55 ed cardiac alpha-actin, reversed cardiac and myocyte hypertrophy and interstitial fibrosis, reduced t
57 , or cardiac transplants (n=2) showed marked myocyte hypertrophy and iron deposits with or without in
58 ctivity between calcineurin-mediated cardiac myocyte hypertrophy and p38 MAPK signaling in vitro and
59 5N may further contribute to the severity of myocyte hypertrophy and related prognosis of the disease
61 scriptional changes occurring during cardiac myocyte hypertrophy and that Ras and Raf may be downstre
62 MAPK activity are associated with changes in myocyte hypertrophy and viability, suggesting a potentia
63 rial dilatation, mitral valve regurgitation, myocyte hypertrophy, and atrial fibrosis occurred progre
65 OS3(-/-) TAC hearts developed less fibrosis, myocyte hypertrophy, and fetal gene re-expression (B-nat
66 nhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function
67 uppression of Ca(2+)-induced Ca(2+) release, myocyte hypertrophy, and premature death by 16 weeks of
68 pregulation of transcription factors, induce myocyte hypertrophy, and prepare the cell for entry into
69 ho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellu
70 response to the known stimulators of cardiac myocyte hypertrophy, angiotensin II (Ang II) and phenyle
71 B(DeltaI)/B(DeltaI) mice developed cardiac myocyte hypertrophy between 7 months and 11 months of ag
72 their ventricular myocytes and showed a 28% myocyte hypertrophy; both phenomena were prevented by IG
73 This phenotype does not appear to involve myocyte hypertrophy but is associated with dephosphoryla
74 DF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy.
75 reover, 5 of 5 B(DeltaI)/B(-) mice developed myocyte hypertrophy by 1 month; B(DeltaI)/B(-) mice also
77 pathways include those that regulate cardiac myocyte hypertrophy, calcium homoeostasis, energetics, a
78 a (IL-1beta) induces a novel form of cardiac myocyte hypertrophy characterized by an increase in prot
79 II-B results in a marked increase in cardiac myocyte hypertrophy compared with the NM II-B hypomorphi
80 betaIPKC, also inhibited PMA-induced cardiac myocyte hypertrophy, demonstrating that both betaI- and
81 t correlation (r=0.85) between the extent of myocyte hypertrophy (determined by computer imaging) and
83 n caused cardiac histopathologic findings of myocyte hypertrophy, disarray and replacement fibrosis.
84 ardly appear similar to conditions with true myocyte hypertrophy (e.g., hypertrophic cardiomyopathy,
87 and pathophysiological processes, including myocyte hypertrophy, fibrosis, inflammation and epitheli
88 to investigate the relative contribution of myocyte hypertrophy, hemodynamic load, severity of AS, a
89 n of ERK1/2 has been associated with cardiac myocyte hypertrophy (ie, increased cell size and myofibr
90 a remodeling process that is accompanied by myocyte hypertrophy, impaired contractility, and pump fa
93 heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation
94 r the effects of IGF-1 on cell viability and myocyte hypertrophy in the nonpathological and pathologi
95 ects them from apoptosis and interferes with myocyte hypertrophy in the normal and pathological heart
97 aryl coenzyme A inhibitors (statins) inhibit myocyte hypertrophy in vitro and ameliorate the progress
100 ated PE-mediated/FAK-dependent initiation of myocyte hypertrophy in vivo Collectively, these findings
101 rinking water had a small effect in reducing myocyte hypertrophy in WT mice and no effect in betaRM m
103 y in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the m
104 llmarks of cardiovascular aging (progressive myocyte hypertrophy, increased myocardial fibrosis and a
105 etion in the mouse attenuated the concentric myocyte hypertrophy induced by pressure overload and cat
106 n the regulation of cardiac gene expression, myocyte hypertrophy, inflammation, energetic metabolism,
111 m the sham-operated group (P<0.05), regional myocyte hypertrophy (myocyte volume per nucleus, 14 183+
113 diomyopathy with prominent histopathology of myocyte hypertrophy, myofibrillar disarray, fibrosis, an
114 proteins demonstrate that PGF2alpha-induced myocyte hypertrophy occurs independent of either PKC, p3
115 nical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and beta-AR signal
116 myocardial specimens from humans either with myocyte hypertrophy or with no pathological changes.
119 mitogen-activated protein kinase), increased myocyte hypertrophy, reduced SERCA2a activity with uncha
120 nflammation, collagen deposition and cardiac myocyte hypertrophy, regenerated 80-90% of lost myocardi
122 ession of cardiac stretch response proteins, myocyte hypertrophy, sarcoplasmic reticulum Ca2+-ATPase
123 iferation, angiogenesis, collagen synthesis, myocyte hypertrophy, scar contraction, and, ultimately,
124 veloped a computational model of the cardiac myocyte hypertrophy signaling network to determine how t
125 generated a model of persistent, functional myocyte hypertrophy using a tissue-restricted transgene
126 PGF2alpha and 8,12-iso-iPF2alpha-III induce myocyte hypertrophy via discrete signaling pathways.
128 resulted in increased ventricular growth and myocyte hypertrophy when treated embryos were compared t
129 in wall thickness with partial resolution of myocyte hypertrophy, whereas calorie-restricted mice had
130 erted opposing effects on the development of myocyte hypertrophy, which is an adaptive physiological
131 age, these animals demonstrated compensatory myocyte hypertrophy with an increase in the cardiac coll
132 cal increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical a
133 on of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necros
135 Histological analysis reveals marked cardiac myocyte hypertrophy, with accompanying cellular infiltra
136 ity, inhibit 8,12-iso-iPF2alpha-III -induced myocyte hypertrophy, with IC50 values of 60 +/- 12 and 3
137 5) improves regional function by stimulating myocyte hypertrophy without increasing myocardial perfus
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。