戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ctory-auditory convergence upstream from the olfactory tubercle.
2 bnuclei examined within the hypothalamus and olfactory tubercle.
3 ared in the striatum, nucleus accumbens, and olfactory tubercle.
4 perirhinal projections were primarily to the olfactory tubercle.
5 bens, along with light label in the adjacent olfactory tubercle.
6 eral caudate putamen, nucleus accumbens, and olfactory tubercle.
7 ateral and paraventricular hypothalamus, and olfactory tubercle.
8 ceral stimuli in the striatal compartment of olfactory tubercle.
9 teral shell of the nucleus accumbens and the olfactory tubercle.
10 and terminated lightly within layer 3 of the olfactory tubercle.
11 eral shell of the nucleus accumbens, and the olfactory tubercle.
12 integrated into limbic-motor circuits by the olfactory tubercle.
13 leus as well as in the nucleus accumbens and olfactory tubercle.
14 l ventral pallidum and pallidal parts of the olfactory tubercle.
15 arily to the striatum, nucleus accumbens and olfactory tubercles.
16    In vivo extracellular recordings from the olfactory tubercle, a trilaminar structure within the ba
17 ria terminalis, the claustrum (alpha1G), the olfactory tubercles (alpha1H and alpha1I), and the subth
18  accumbens among females (p<0.01) and in the olfactory tubercle among both females (p<0.05) and males
19 ar cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that
20 ar levels of gene expression remained in the olfactory tubercle and the inferior colliculus, with som
21 m the nucleus tractus solitarii (NTS) to the olfactory tubercle and the midline/intralaminar thalamus
22        Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex.
23  accumbens, caudate putamen, frontal cortex, olfactory tubercle and VTA.
24 d DA release from the rat striatum (STR) and olfactory tubercles and NE release from hippocampus, tha
25 microM) evoked [3H]DA release from striatum, olfactory tubercles and prefrontal cortex (PFC), and [3H
26 vel of the ventral caudate, ventral putamen, olfactory tubercle, and accumbens core and shell.
27 operties of the striatum, nucleus accumbens, olfactory tubercle, and central nucleus of the amygdala.
28 n staining were seen in the dorsal striatum, olfactory tubercle, and cerebellar vermis.
29 Gsh2 have severe hypoplasia of the striatum, olfactory tubercle, and interneurons that migrate from t
30                       The perirhinal cortex, olfactory tubercle, and most subdivisions of the hippoca
31    Line differences in ENK expression in the olfactory tubercle, and possibly the nucleus accumbens,
32 the CNS, which was strongest in neostriatum, olfactory tubercle, and supraoptic nucleus.
33 brain, structures such as the accumbens, the olfactory tubercle, and the amygdala have lost legitimac
34 urons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular ce
35 re and shell), cell bridges of the striatum, olfactory tubercles, and areas of extended amygdala with
36 plexus, striatum, hippocampus, hypothalamus, olfactory tubercles, and spinal cord.
37 r rates of glucose utilization in the medial olfactory tubercle, anterior nucleus accumbens and dorso
38  the caudate-putamen, nucleus accumbens, and olfactory tubercle, as well as structures that receive o
39 triatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST
40 y depleted in striatum and nucleus accumbens/olfactory tubercle, but not septum, hypothalamus, or ven
41 was also decreased in the nucleus accumbens/ olfactory tubercle, but this effect was observed after 1
42 e receptor D2 mRNA was also increased in the olfactory tubercle, caudate putamen, and the nucleus acc
43 lactosidase gene expression was found in the olfactory tubercle, caudate, hippocampus, piriform corte
44 ygdala, lateral nucleus of the hypothalamus, olfactory tubercle, caudate-putamen, nucleus accumbens a
45 limbic and basal forebrain regions including olfactory tubercle, central nucleus of the amygdala, and
46 ical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum
47                 In the nucleus accumbens and olfactory tubercle, CRF1 binding was initially the same
48            Similar results were obtained for olfactory tubercle determinations, with the exception th
49 um into the accumbens core and shell and the olfactory tubercle does not reflect the functional organ
50                          Corpus striatal and olfactory tubercle dopamine.
51 nding was found in the nucleus accumbens and olfactory tubercle following twice daily cocaine injecti
52 ntly depleted in striatum, nucleus accumbens/olfactory tubercle, hippocampus, somatosensory cortex, b
53 on analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional li
54 he induseum griseum and taenia tecta; in the olfactory tubercle; in CA1-CA3, the hilus of the dentate
55 triatal complex (caudate n, n. accumbens and olfactory tubercle), indicating that PDE10A is expressed
56    CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex,
57  caudate and 33% in the ventral striatum and olfactory tubercle labeled by the aFGF cRNA.
58                 Light projections end in the olfactory tubercle, lateral septal nucleus, posterior ba
59 s that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of coca
60       Our findings are novel in showing that olfactory tubercle neurons participate in such coding sc
61  protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neo
62 84 binding sites in SHR were observed in the olfactory tubercle, nucleus accumbens, basolateral amygd
63 pamine receptor D1 mRNA was increased in the olfactory tubercle, nucleus accumbens, caudate putamen,
64 e in seizure circuitry: the piriform cortex, olfactory tubercle, nucleus accumbens, caudate-putamen,
65 , hippocampus, hypothalamus, cerebellum, and olfactory tubercle of naive rats.
66 er binding were observed in the striatum and olfactory tubercle of rats and control and alpha2A KO mi
67 nments, and the accompanying changes in both olfactory tubercle (OT) and hypothalamic (HYPOTH), norep
68  and nucleus accumbens (NAC), and within the olfactory tubercle (OT) and orbital cortex.
69 P and the polymorph (pallidal) region of the olfactory tubercle (OT) and transynaptic infection of a
70 c connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons.
71 on of the preproenkephalin (ENK) gene in the olfactory tubercle (OT) portion of the ventral striatum
72 the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involve
73                                          The olfactory tubercle (OT), a ventral striatum structure th
74 es of rat striatum, nucleus accumbens (NAc), olfactory tubercles (OT) and prefrontal cortices (PFC) i
75  the anterior piriform cortex (APCx) and the olfactory tubercle (OTu) are activated during nursing-as
76 to the caudate putamen and nucleus accumbens/olfactory tubercle, respectively, constituting mesostria
77 ising frontal piriform cortex (PirF) and the olfactory tubercle responded preferentially to attended
78                           Remarkably, 19% of olfactory tubercle single units also showed robust respo
79 orebrain, of anesthetized mice revealed that olfactory tubercle single units selectively respond to o
80 ferent CIN responses, we recorded from adult olfactory tubercle slices in the mouse ventral striatum.
81 unoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, ver
82             Here we show that neurons in the olfactory tubercle subregion of the ventral striatum rob
83 ower amounts in striatum, nucleus accumbens, olfactory tubercle, thalamus, and substantia nigra.
84 ed substantially stronger projections to the olfactory tubercle than did the early-generated cells.
85 rhinal cortex, the endopiriform nucleus, the olfactory tubercle, the anterior olfactory nucleus and t
86 usion) is readily self-administered into the olfactory tubercle, the most ventral portion of the vent
87 binding were significantly higher within the olfactory tubercle, ventral tegmental area, and NAc core
88 ce, (11)C tracer binding in the striatum and olfactory tubercle was low, similar to that of the front
89  nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral
90 s in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated.
91 ion exhibiting DCL expression is part of the olfactory tubercle where DCL is found in the neuropil of
92 between the medial nucleus accumbens and the olfactory tubercle, whereas the perirhinal projections w
93 t projects throughout layer IA of the entire olfactory tubercle, with apparently more fibres in the l

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。