戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 nal allele) and HSB17B4 c.1704T>A (p.Y568X) (paternal allele).
2  the endosperm by maternal MEA silencing the paternal allele.
3  been proposed to recruit methylation on the paternal allele.
4 les), G(s)alpha is poorly expressed from the paternal allele.
5 ionally active maternal as compared with the paternal allele.
6  been proposed to attract methylation on the paternal allele.
7 ue' through embryonic transcription from the paternal allele.
8 specific imprinting with expression from the paternal allele.
9 tially expressed from either the maternal or paternal allele.
10  in the next generation independently of the paternal allele.
11 ish methylation and expression of the active paternal allele.
12 ormal kidney with expression confined to the paternal allele.
13 q32 that is expressed predominantly from the paternal allele.
14 ternal allele being more methylated than the paternal allele.
15 anscript were expressed exclusively from the paternal allele.
16 ient had an early stop codon mutation in the paternal allele.
17 e transcript from P2 is exclusively from the paternal allele.
18  in neural stem cells (NSCs) solely from the paternal allele.
19 on, as it is methylated only on the silenced paternal allele.
20 rinted and transcribed specifically from the paternal allele.
21 of HYMAI and is also expressed only from the paternal allele.
22 e and methylated at the 5' end of the silent paternal allele.
23 allelic imbalance in expression favoring the paternal allele.
24 Peg3, Ocat is expressed exclusively from the paternal allele.
25 al allele by specific DNA methylation of the paternal allele.
26 nitial mutation occurred on the maternal vs. paternal allele.
27 shows that ZNF127 is expressed only from the paternal allele.
28 enter activates expression of genes from the paternal allele.
29 duction, irrespective of the genotype of the paternal allele.
30 nal allele and hypermethylated on the silent paternal allele.
31 which is unmethyl-ated only on the expressed paternal allele.
32 region of GPIbalpha, inherited from a mutant paternal allele.
33 can respond to that imprint by silencing the paternal allele.
34  animal, expression of Ipw is limited to the paternal allele.
35 omosome 11 is expressed exclusively from the paternal allele.
36  for imprinted transgenes and the endogenous paternal allele.
37 sidual mRNA expression is from the imprinted paternal allele.
38 stimplantation by de novo methylation of the paternal allele.
39 9 from the maternal allele and Igf2 from the paternal allele.
40  factors (NRF's) and YY1 specifically on the paternal allele.
41 expression is primarily from the maternal or paternal allele.
42 enes that are expressed exclusively from the paternal allele.
43 ng stably transcribed either the maternal or paternal allele.
44 ments involved in targeting silencing of the paternal allele.
45 F2) gene is expressed predominantly from the paternal allele.
46  directs the DNA binding of BORIS toward the paternal allele.
47 mprinted--monoallelically expressed from the paternal allele.
48 al expression of a gene from its maternal or paternal allele.
49 ons (DMRs), which are methylated only on the paternal allele.
50 inactivates H19 expression on the methylated paternal allele.
51 h increased expression bias in favour of the paternal allele.
52 as caused by specific down-regulation of the paternal allele.
53 enes that show transcriptional repression of paternal alleles.
54 2 is deleted, leading to reactivation of the paternal alleles.
55 d NDN expression was detected primarily from paternal alleles.
56  the differential expression of maternal and paternal alleles.
57 hripsis, and both de novo events occurred on paternal alleles.
58 orphisms that could distinguish maternal and paternal alleles.
59  be expressed from both the maternal and the paternal alleles.
60 ds to the silent maternal but not the active paternal alleles.
61 oice for expression between the maternal and paternal alleles.
62  specific regulatory regions on maternal and paternal alleles.
63 ed undescribed mutations in the maternal and paternal alleles.
64 rential DNA methylation between maternal and paternal alleles(1).
65 m the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal c
66 eterozygosity for a 2-bp deletion within the paternal allele (120delTG) within exon 3 and a cysteine
67 y or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering p
68                     MSI was also observed in paternal alleles, a surprising result since the alleles
69 A-KD P19 cells, as the normally unmethylated paternal allele acquired methylation that resulted in bi
70 tylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern.
71 ts indicate that DNA hypermethylation on the paternal allele and allele-specific acquisition of histo
72 Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the matern
73 ntial methylation are hypermethylated on the paternal allele and hypomethylated on the maternal allel
74 ociated RNA transcribed exclusively from the paternal allele and in the opposite orientation with res
75 R722X in exon 16 and R865W in exon 19 on the paternal allele and R844C in exon 19 on the maternal all
76 he stringency of the methylated state of the paternal allele and the unmethylated state of the matern
77           IGF2 was expressed solely from the paternal allele, and H19 was expressed solely from the m
78 on and H3 lysine 4 (H3K4) methylation of the paternal allele, and H3 lysine 9 (H3K9) methylation of t
79 Nase I hypersensitive site, specific for the paternal allele, and six evolutionarily conserved (human
80           Individual methylation patterns of paternal alleles, and therefore all of the variation (no
81 ytes; (ii) detection of transcripts from the paternal allele; and (iii) detection of primary transcri
82  H19 gene are active and hypomethylated; the paternal alleles are inactive and hypermethylated.
83                            Expression of the paternal allele arises from a different promoter region
84            We conclude that the incompatible paternal allele arose in the Mus musculus domesticus lin
85 lencing implies that PWS-IC functions on the paternal allele as a bidirectional activator.
86 differential expression between maternal and paternal alleles as a consequence of epigenetic modifica
87 f methylation erasure was evident on the H19 paternal allele at 9.5 dpc, most PGCs did not demonstrat
88            Inactivation of expression of the paternal allele at two maternally silent imprinted loci
89 ns that are associated with the maternal and paternal alleles at imprinted loci and provides evidence
90     A genetic interaction among maternal and paternal alleles at only a few loci prevents the fertili
91  contained identical single maternal and two paternal alleles at several independent loci.
92 er translation of protein from the wild-type paternal alleles: at the morula stage in embryos lacking
93                                 Although the paternal allele becomes hypermethylated during fetal sta
94 mental expression is maternal in origin, the paternal allele becomes increasingly active during devel
95 printed in most normal tissues with only the paternal allele being transcribed.
96                      Expressed only from the paternal allele, both genes require the imprinting-cente
97 G and CpNpG nucleotides on the non-expressed paternal allele but has low levels of methylation on the
98 CpG island is completely unmethylated on the paternal allele but methylated on the maternal allele.
99 ked by prominent hypersensitive sites on the paternal allele, but is completely inaccessible to nucle
100 ts that are normally expressed only from the paternal allele, but that are biallelically expressed in
101  the maternal allele and unmethylated on the paternal allele, but that is unmethylated on both allele
102  on the maternal allele and is marked on the paternal allele by developmentally regulated bivalent ch
103                  Expression of ARHI from the paternal allele can be down-regulated by multiple mechan
104                                          The paternal allele carried the E474Q mutation in 3 families
105                                          His paternal allele carries a novel deletion arising from re
106 terozygous for an additional mutation on the paternal allele changing glutamine 226 to arginine.
107            We tested for association between paternal allele compatibility/incompatibility and 167 ge
108  with random choice between the maternal and paternal alleles defines an unusual class of genes compr
109                                    Mice with paternal allele deletion of Gnas (Gnas(+/p-)) have defec
110 gion equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animal
111 on in the first exon of lambda5/14.1 and the paternal allele demonstrated three basepair substitution
112 ternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles
113                              Mutation in the paternal allele, designated alpha spectrin(PRAGUE), is a
114 ), an imprinted gene expressed only from the paternal allele during development, was disrupted by gen
115                                          The paternal allele encoded a nonsense mutation, Arg303X, in
116 in near-equal amounts from both maternal and paternal alleles, even during the initial stages of embr
117 for an inactivating mutation in CD45 but the paternal alleles exhibited no detectable mutations.
118                          Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele ex
119         Additionally, mechanisms controlling paternal allele expression appear to be faithfully repli
120 le silencing are monoallelic versus 56% with paternal allele expression-this cardiac-specific phenome
121  from sperm, is acquired specifically on the paternal allele following implantation, and is dependent
122 within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that
123 transcript 1) is expressed normally from the paternal allele, from which KVLQT1 transcription is sile
124  adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor
125              cDNA derived from the patient's paternal allele had an additional 119-bp insertion betwe
126                                          Her paternal allele had not only the expected sickle-trait m
127           Interestingly, for both genes, the paternal allele has a stronger influence on the embryoni
128 marker(15) chromosome, and occasionally on a paternal allele in a cell line carrying a paternal inter
129  that suppress G(s)alpha expression from the paternal allele in a tissue-specific manner.
130 ied to be monoallelically expressed from the paternal allele in a variety of tissues.
131 acrine growth factor expressed only from the paternal allele in adult tissues.
132 from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except
133 his region are exclusively methylated on the paternal allele in blastocysts.
134       Dlk was expressed exclusively from the paternal allele in both the embryo and placenta, but the
135  show that Zfp127 is expressed only from the paternal allele in brain, heart and kidney.
136 nted with expression occurring from just the paternal allele in brain.
137 ted genes that are expressed solely from the paternal allele in endosperm are targets of H3K27me3.
138     Ube3a is imprinted with silencing of the paternal allele in hippocampus and cerebellum in mice.
139 g of H19 is linked to hypomethylation of the paternal allele in human bladder cancer, unlike the situ
140 ession are reminiscent of that found for the paternal allele in humans (10%).
141  However, there was loss of silencing of the paternal allele in many endodermal and other tissues.
142 antisense (Gnas-as) is derived only from the paternal allele in most but not all tissues.
143  transcription occurs predominantly from the paternal allele in mouse and man (maternal imprinting).
144           Expression is exclusively from the paternal allele in neonatal brain.
145 fected siblings only transcribed the mutated paternal allele in skeletal muscle, whereas the maternal
146 ich are methylated in spermatozoa and on the paternal allele in somatic cells, are differentially met
147 e preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells,
148  H19 gene is hypermethylated on the inactive paternal allele in somatic tissues and sperm.
149 rinted and preferentially expressed from the paternal allele in the fetus.
150 dder cancer and found hypomethylation of the paternal allele in two of six informative cases.
151  Zac1 are expressed predominantly from their paternal alleles in all adult mouse tissues, except that
152  allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult soma
153 pression on the maternal allele, but not the paternal allele, in the dorsomedial nucleus of the hypot
154  the differential expression of maternal and paternal alleles, independently evolved in mammals and i
155 d expression is similar in both maternal and paternal alleles indicating no imprinting effect.
156 ability, are still expressed mainly from the paternal allele, indicating the imprinting of these two
157 on of mouse APeg3 is derived mainly from the paternal allele, indicating the imprinting of this antis
158 However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most
159 ld-type maternal allele is essential and the paternal allele is dispensable for seed viability.
160  imprinting in Arabidopsis endosperm but the paternal allele is dispensable.
161 20me3), whereas the transcriptionally active paternal allele is enriched in H3K4me2 and H3K9 acetylat
162  the brain of Ube3a(m-/p+) mice, because the paternal allele is epigenetically silenced in most neuro
163 in exon 9, we have established that only the paternal allele is expressed in human placenta.
164  of expression of the UBE3A gene because the paternal allele is genetically imprinted.
165 ot in +/p- mice, demonstrating that the Gnas paternal allele is imprinted in this tissue.
166  allele is active in the tumors in which the paternal allele is knocked out and (3) all three of the
167 he neuronatin gene is imprinted and only the paternal allele is normally expressed in the adult.
168 lele is expressed in the endosperm while the paternal allele is not expressed.
169                          CTCF binding to the paternal allele is prevented by repeat-mediated methylat
170 dominantly from the maternal allele, and the paternal allele is silenced.
171     The maternal allele is expressed and the paternal allele is silent.
172 ific differential methylation: the expressed paternal allele is unmethylated, whereas the silenced ma
173                We propose that mosaicism for paternal alleles is a maternal effect that results from
174 rence in expression between the maternal and paternal alleles is associated with a corresponding diff
175 llelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and de
176                    Mutation at PWS-IC on the paternal allele leads to gene silencing across the entir
177 44-base-pair deletion of the promoter on the paternal allele leads to the derepression of all silent
178 ucts suggest that this delayed expression of paternal alleles may be a global phenomenon.
179 sible molecular basis for the strong bias of paternal allele mutations and variable penetrance observ
180 rs contain a Y-chromosomal locus and/or new (paternal) alleles not present in adjacent normal uterine
181  showed that monoallelic expression from the paternal allele occurs by the 4-cell stage.
182 mplication, the failure of expression of the paternal allele of a single maternally imprinted gene th
183 anscriptional up-regulation of the remaining paternal allele of both Peg3 and Usp29, causing the incr
184 ich exhibit aberrant hypermethylation in the paternal allele of differential methylated regions (DMRs
185 was expressed in A9 cells that contained the paternal allele of human chromosome 1.
186 At 30 and 60 days post-weaning, however, the paternal allele of Igf2 DMR2 was hypermethylated in the
187 individuals with truncating mutations on the paternal allele of MAGEL2, a gene within the PWS domain.
188 sults in activation of the normally silenced paternal allele of Mez1.
189 pigenetic function of CypA in protecting the paternal allele of Peg3 from DNA methylation and inactiv
190 confirmed that YY1 binds specifically to the paternal allele of the gene.
191 ygous inactivating germline mutations in the paternal allele of the GNAS gene.
192 y be a suppressor antagonistic to the active paternal allele of the ICR, suggesting a potential intra
193                            Disruption of the paternal allele of the imprinted embryonic gene coding f
194 ne marks such as H3K27me3 are present on the paternal allele of these genes in both ES and TS cells.
195  for compounds that could reverse the silent paternal allele of Ube3a in neurons, but the mechanism o
196                              In neurons, the paternal allele of UBE3A is intact but epigenetically si
197                                          The paternal allele of Ube3a is silenced by imprinting in ne
198         (a) Equal expression of maternal and paternal alleles of insulin-like growth factor 2 switche
199 DNA methylation distinguish the maternal and paternal alleles of many imprinted genes.
200    Genomic imprinting, by which maternal and paternal alleles of some genes have different levels of
201                                   The silent paternal alleles of the genes are marked in the trophobl
202 t probabilities of carrying the maternal and paternal alleles of the individual in which the gene is
203 e only) and Angelman syndrome (AS) patients (paternal allele only).
204 ed with acetylated histones on the expressed paternal allele only.
205 ssed in embryos and the adult brain from the paternal allele only.
206  humanised allele, expression of a wild-type paternal allele or loss of function of Igf2.
207 re expressed monoallelically from either the paternal allele or maternal allele as a result of epigen
208          In contrast, the methylation of the paternal allele originates during embryogenesis.
209          A de novo mutation developed in the paternal allele, producing compound heterozygosity.
210 ing, with the maternal allele active and the paternal allele relatively inactive, in many human and m
211 e been subject to evolutionary selection for paternal allele repression.
212 , resulting in silencing of the maternal and paternal alleles, respectively.
213 hylated maternal alleles and hypermethylated paternal alleles, respectively.
214                                              Paternal allele sharing across 18q21-23 was also signifi
215                     In exploratory analyses, paternal allele sharing on 18q21 was significantly (P =.
216 pairs showed significantly (P =.016) greater paternal allele sharing.
217  of imprinted genes is that the maternal and paternal alleles show differences in methylation.
218 w that only 5% of known imprinted genes with paternal allele silencing are monoallelic versus 56% wit
219                                Unexpectedly, paternal-allele silencing is not controlled by DNA methy
220 rinted site, identified by RLGS-M, and shows paternal allele specific expression in mouse brain, stom
221 dkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR.
222 ollowed by sequencing identify 76 genes with paternal allele-specific DNase I hypersensitive sites th
223                                              Paternal allele-specific expression at the imprinted Ras
224 bors an antisense transcript gene displaying paternal allele-specific expression, and the evolutionar
225                                            A paternal allele-specific gap was found along Kcnq1ot1, i
226 bits maternal allele-specific expression and paternal allele-specific hypermethylation.
227 ing at the Xist gene is essential to achieve paternal allele-specific imprinted X-chromosome inactiva
228 inted Rasgrf1 locus in mice is controlled by paternal allele-specific methylation at a differentially
229 with biallelic methylation at one region but paternal allele-specific methylation at another.
230 s did not demonstrate significant erasure of paternal allele-specific methylation until 10.5 dpc.
231                                  We detected paternal allele-specific transcripts downstream of Nespa
232                  Here we define maternal and paternal allele-specific Ube3a protein expression throug
233 sequence outside of the DMD can attract some paternal-allele-specific CpG methylation 5' of H19 in pr
234 pt is imprinted, and expressed only from the paternal allele, suggesting that it may have a specific
235 wo DMRs in Igf2 are methylated on the active paternal allele, suggesting that they contain silencers.
236                                       On the paternal allele the patient had 3 structural gene abnorm
237  is inherited from sperm and retained on the paternal allele throughout development.
238  H19 gene is hypermethylated on the inactive paternal allele throughout development.
239         The 2-kb region is methylated on the paternal allele throughout spermatogenesis, suggesting t
240 rome and the potential to harness the intact paternal allele to correct the disease, no gene-specific
241 tase-polymerase chain reaction and found the paternal allele to lack exons 4 through 11 inclusive.
242 ct that Impt1 is relatively repressed on the paternal allele, together with data from other imprinted
243                While the expression from the paternal allele was comparable with patterns seen for th
244 ereby an excess sharing of maternal, but not paternal, alleles was present.
245 AR-1), each normally expressed only from the paternal allele, was expressed in cells from PWS imprint
246   SNRPN intron 7, which is methylated on the paternal allele, was not associated with acetylated hist
247 ed double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the ho
248  loci and that a combination of maternal and paternal alleles were retained, indicating that mitotic
249 atocarcinogenesis and can substitute for the paternal allele when it is inactivated.
250          XLalphas is only expressed from the paternal allele, whereas G(s)alpha is biallelically expr
251  the imprinted Igf2 gene (expressed from the paternal allele), which encodes a growth-promoting facto
252 lice site mutation in intron 3, CAG --> CAA (paternal allele), which resulted in the activation of a
253  gene that is expressed exclusively from the paternal allele while the maternal allele is silent and
254 tor II (IGF2) is normally expressed from the paternal allele, while H19 and p57KIP2, a cyclin-depende
255 ncode Xlalphas and are derived only from the paternal allele, while transcripts from P3 encode the al
256 imprinted and is transcribed mainly from the paternal allele with highest expression levels in adult
257 ow that replacing the Rasgrf1 repeats on the paternal allele with region 2 allows both methylation an
258 IN lncRNA was expressed exclusively from the paternal allele, with the maternal counterpart being sil
259 ion of both transcripts is restricted to the paternal allele, with the silent maternal allele retaini
260 imprinted Rasgrf1 locus is methylated on the paternal allele within a differentially methylated domai
261 specifically to ensure the repression of the paternal allele, without a predominant effect on the epi

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top