コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 th factor (VEGF) is essential for normal and pathological angiogenesis.
2 a-3-PUFA or their bioactive products reduces pathological angiogenesis.
3 or (VEGF) is essential for developmental and pathological angiogenesis.
4 is integrity during vascular development and pathological angiogenesis.
5 ights into the role of integrin-VEGF axis in pathological angiogenesis.
6 ies consistent with a role during normal and pathological angiogenesis.
7 scular permeability during physiological and pathological angiogenesis.
8 may provide a useful target for reduction of pathological angiogenesis.
9 y identify new molecular targets to regulate pathological angiogenesis.
10 s of Akt1 knockout on vascular integrity and pathological angiogenesis.
11 tant implications for both physiological and pathological angiogenesis.
12 ds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis.
13 ifunctional cytokine with important roles in pathological angiogenesis.
14 osine kinase that mediates physiological and pathological angiogenesis.
15 play an important role in physiological and pathological angiogenesis.
16 by TN-C suggest a potential role for TN-C in pathological angiogenesis.
17 nt in high VEGF conditions, as occurs during pathological angiogenesis.
18 in vasculogenesis and both physiological and pathological angiogenesis.
19 which plays an important role in normal and pathological angiogenesis.
20 nd regression of conditions characterized by pathological angiogenesis.
21 ) plays important roles in physiological and pathological angiogenesis.
22 DR play important roles in physiological and pathological angiogenesis.
23 ossibility of a novel approach to inhibiting pathological angiogenesis.
24 ptosis is a critical modulator of normal and pathological angiogenesis.
25 nd plays a key role during physiological and pathological angiogenesis.
26 Flt-1, play a key role in physiological and pathological angiogenesis.
27 growth factor (VEGF) is a major mediator of pathological angiogenesis.
28 , with direct relevance to physiological and pathological angiogenesis.
29 ted through a negative-feedback loop driving pathological angiogenesis.
30 ring novel therapeutic strategies to control pathological angiogenesis.
31 ent to maintain vascular homeostasis but not pathological angiogenesis.
32 signaling and contributes to the process of pathological angiogenesis.
33 ication signals in driving physiological and pathological angiogenesis.
34 l posttranscriptional mechanism critical for pathological angiogenesis.
35 by exacerbating STAT3 activation, leading to pathological angiogenesis.
36 s, thereby linking atherogenic processes and pathological angiogenesis.
37 major driver of solid tumor progression and pathological angiogenesis.
38 ributing to retinal vascular dysfunction and pathological angiogenesis.
39 ntial therapeutic target in the treatment of pathological angiogenesis.
40 sm EGFL7 engages to govern physiological and pathological angiogenesis.
41 ression of the IGFBP-vWC variant exacerbated pathological angiogenesis.
42 d to play an important role in embryonic and pathological angiogenesis.
43 n essential role in vascular development and pathological angiogenesis.
44 bute to more effective strategies to control pathological angiogenesis.
45 ould offer a new target for the treatment of pathological angiogenesis.
46 erapeutic agents that are more selective for pathological angiogenesis.
47 een shown to regulate both physiological and pathological angiogenesis.
48 targeting may allow selective inhibition of pathological angiogenesis.
49 hairpin RNAs had no effect on the extent of pathological angiogenesis.
50 -C may provide a novel route for controlling pathological angiogenesis.
51 we studied the involvement of complement in pathological angiogenesis.
52 A) is a major regulator of physiological and pathological angiogenesis.
53 LXA(4) circuit as an endogenous regulator of pathological angiogenesis.
54 apparently distinct for physiological versus pathological angiogenesis.
55 rophin (PTN, Ptn) stimulates both normal and pathological angiogenesis.
56 giogenesis and block its activity to control pathological angiogenesis.
57 profile of VEGF-B in both physiological and pathological angiogenesis, a neutralising anti-VEGF-B an
58 t the actions of these inhibitors to promote pathological angiogenesis, a requisite event for tumor p
61 trikingly reduced in cav-1(-/-) mice, as was pathological angiogenesis and associated chronic vascula
62 r hyperpermeability induced by VEGF-A and in pathological angiogenesis and associated chronic vascula
63 gulate inflammation and foam cell formation, pathological angiogenesis and calcification, which are c
65 re not essential for vascular development or pathological angiogenesis and highlight the need for fur
66 n-1 regulates portal hypertension-associated pathological angiogenesis and highlights that increasing
67 endothelial alpha3beta1 negatively regulates pathological angiogenesis and implicate an unexpected ro
69 n N-terminal kinase 1 (JNK1) exhibit reduced pathological angiogenesis and lower levels of retinal VE
72 thesized that EPOR signaling is important in pathological angiogenesis and tested this hypothesis usi
73 elial cells and in several in vivo models of pathological angiogenesis and that different from DSCR1-
76 elin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogeni
77 helial cells and retinal pericytes to induce pathological angiogenesis and vascular remodeling during
78 stasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two
79 t PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD sup
81 evidence suggests that hepatic fibrosis and pathological angiogenesis are interdependent processes t
82 se this endothelial quiescence to facilitate pathological angiogenesis are not yet completely underst
84 ide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced st
85 ether this cytokine could play a role in the pathological angiogenesis associated with human diseases
88 culogenesis during embryonic development and pathological angiogenesis, but little is known about the
89 /tissue barrier dysfunctions associated with pathological angiogenesis, but the mechanisms of VEGF-in
90 ble microRNA in the endothelium, facilitates pathological angiogenesis by downregulating p120RasGAP,
91 e that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival si
92 trocytoma, we report that tumor cells induce pathological angiogenesis by suppressing expression of t
93 1, or canonical TGFbeta receptors results in pathological angiogenesis caused by defective neuroepith
94 a master regulator of both developmental and pathological angiogenesis, composed of an oxygen-sensiti
97 on between the DNA damage repair pathway and pathological angiogenesis could open previously unexplor
98 can be selectively targeted during states of pathological angiogenesis, despite its ubiquitous distri
100 fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not co
101 Added to the complexity is the occurrence of pathological angiogenesis during the course of disease p
106 (VEGF)-A as a major regulator of normal and pathological angiogenesis has enabled significant progre
107 Moreover, miR-23 and miR-27 are required for pathological angiogenesis in a laser-induced choroidal n
108 ology tools, we show that EYA contributes to pathological angiogenesis in a model of oxygen-induced r
109 Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying
112 tly promotes endothelial cell activation and pathological angiogenesis in our previous study, but the
113 helial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies
115 ) in retinas at postnatal day 18 (p18), when pathological angiogenesis in the form of intravitreal ne
116 RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and re
117 hors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopa
118 -KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tu
120 nnective tissue growth factor (CTGF/CCN2) in pathological angiogenesis in the retina is unknown.
124 tential novel therapeutic approach to target pathological angiogenesis in these conditions would be t
125 We demonstrate that resveratrol can inhibit pathological angiogenesis in vivo and in vitro by a sirt
126 motility and vascular assembly in vitro and pathological angiogenesis in vivo, thereby inhibiting tu
129 nd is equally required for developmental and pathological angiogenesis, including during tumor growth
132 poorly understood clinical manifestation of pathological angiogenesis is angiodysplasia, vascular ma
134 of identifying VEGF-independent pathways in pathological angiogenesis is increasingly recognized as
137 A role for fibroblasts in physiological and pathological angiogenesis is now well recognized; howeve
140 al growth factor (VEGF) in developmental and pathological angiogenesis is well established, its funct
141 been well studied in both developmental and pathological angiogenesis, its role in mature blood vess
144 e, the hyperpermeable blood vessels found in pathological angiogenesis, mother vessels, are derived f
148 anisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel op
149 etinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in t
153 els has a protective role as an inhibitor of pathological angiogenesis, such as choroidal neovascular
154 ical angiogenesis and is a major mediator of pathological angiogenesis, such as tumor-associated neov
155 ot only on multiple cell types important for pathological angiogenesis, such as vascular mural and en
156 ery lesions, supporting its association with pathological angiogenesis suggested by our in vitro resu
157 opathy and a repressive function of let-7 in pathological angiogenesis, suggesting distinct implicati
158 ormal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of dis
159 critical in designing targeted inhibitors of pathological angiogenesis that underlies cancer and othe
163 role in neuronal outgrowth and developmental/pathological angiogenesis via interactions with netrin-1
164 lecules exert a feedback control to restrain pathological angiogenesis, which includes physical bindi
166 rapeutic strategies that specifically target pathological angiogenesis without affecting physiologica
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。