戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 cies in inferior temporal visual area TE and perirhinal cortex).
2 in basal ganglia and parietal, temporal, and perirhinal cortex.
3  presented configural stimuli depends on the perirhinal cortex.
4 d with a reduction in neural activity in the perirhinal cortex.
5 l of HD to assess synaptic plasticity in the perirhinal cortex.
6 amine receptors visualized in layer I of the perirhinal cortex.
7 s, anterior and posterior dentate gyrus, and perirhinal cortex.
8 h require glutamate receptor activity within perirhinal cortex.
9 ct structures, including the hippocampus and perirhinal cortex.
10 only modest connections with the rest of the perirhinal cortex.
11 cognitive tasks requiring the prefrontal and perirhinal cortex.
12  IL-1beta in the basolateral amygdala or the perirhinal cortex.
13 ed in the hippocampus, entorhinal, or caudal perirhinal cortex.
14 merous in the rostral (polar) portion of the perirhinal cortex.
15 ortex has the strongest connections with the perirhinal cortex.
16 edial temporal lobe structure, including the perirhinal cortex.
17 er brain regions such as the hippocampus and perirhinal cortex.
18 l topography at a fine-grained level in left perirhinal cortex.
19 arity effect for words was localized to left perirhinal cortex.
20 rade signalling mechanisms in LTD and LTP in perirhinal cortex.
21  model the projection from rat postrhinal to perirhinal cortex.
22 s been suggested between parahippocampal and perirhinal cortex.
23 ciation with large MTL lesions that included perirhinal cortex.
24 in basal ganglia and parietal, temporal, and perirhinal cortex.
25 s in the contribution of the hippocampus and perirhinal cortex.
26                                           In perirhinal cortex, a lasting decrement in neuronal respo
27  and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognit
28                                              Perirhinal cortex ablation has previously been shown onl
29                                Subjects with perirhinal cortex ablation were severely impaired in new
30   The remaining 3 monkeys received bilateral perirhinal cortex ablation.
31 monkeys (Macaca fascicularis) with bilateral perirhinal cortex ablations were impaired relative to 3
32                      Macaques with bilateral perirhinal cortex ablations were selectively impaired re
33 ne details; for example, in the locus of the perirhinal cortex activation.
34                          Significantly, only perirhinal cortex activity is modulated by meaning varia
35 tions implemented across the hippocampus and perirhinal cortex, allowing formal rejection of a single
36 re given lesions of the rhinal cortex or the perirhinal cortex alone, and were then retested.
37  complement of VGF-expressing neurons in the perirhinal cortex, although endogenous neurotrophin-3 (N
38 n contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior i
39 iggered a switch in mechanisms of LTD in rat perirhinal cortex, an area critical for visual recogniti
40 mpaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of
41 ory strength is nonlinear in hippocampus and perirhinal cortex and also distinctly different in those
42 h taste and olfactory cortical areas and the perirhinal cortex and appears to be involved in assessme
43 es, we recognize areas 35 and area 36 of the perirhinal cortex and area 36 contains five subdivisions
44  secondary somatosensory, retrosplenial, and perirhinal cortex and contralateral S1.
45 ial memory are typically associated with the perirhinal cortex and hippocampal formation, respectivel
46       The results suggest that, although the perirhinal cortex and hippocampus can be functionally di
47 In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for
48                             We conclude that perirhinal cortex and hippocampus participate in success
49 by greater across-item pattern similarity in perirhinal cortex and in parahippocampal cortex, but gre
50 hese findings reach beyond simple notions of perirhinal cortex and lateral entorhinal cortex neurons
51                                Specifically, perirhinal cortex and lateral entorhinal cortex represen
52 gardless of subsequent memory, we found that perirhinal cortex and parahippocampal cortex exhibited d
53 vel had higher c-fos activity in the rostral perirhinal cortex and the lateral entorhinal cortex.
54              Outside the frontal cortex, the perirhinal cortex and the orbital prefrontal network are
55  anatomically conserved locations within the perirhinal cortex and the temporal pole.
56 ee MTL areas (hippocampus and entorhinal and perirhinal cortex) and visual area TE as monkeys perform
57  cortex, which shares features of the monkey perirhinal cortex, and a caudal region, the postrhinal c
58  levels of the ventral temporal neocortex or perirhinal cortex, and electron microscopic observations
59    Brain activity in the hippocampal region, perirhinal cortex, and parahippocampal cortex was associ
60 as for visual object representation, such as perirhinal cortex, and reward-guided learning, such as t
61  the entorhinal cortex, the hippocampus, the perirhinal cortex, and rostral parahippocampal cortex.
62                                        Thus, perirhinal cortex appeared to integrate timing informati
63  neuronal responses to associated stimuli in perirhinal cortex are altered over the course of learnin
64 e data indicate that behaviors requiring the perirhinal cortex are disrupted in advanced age, and sug
65 ding the hippocampus, entorhinal cortex, and perirhinal cortex are thought to be part of a unitary sy
66 (viz., ectorhinal cortex=Brodmann's area 36, perirhinal cortex=area 35, lateral entorhinal=area 28, a
67          In contrast, the connections of the perirhinal cortex (areas 35 and 36) indicated that the b
68 ort that bilateral, excitoxic lesions of the perirhinal cortex attenuate rats' familiarity-based stim
69 tion and establish a functional homology for perirhinal cortex between species, although we propose t
70 ced GAbeta accumulation in the subiculum and perirhinal cortex, both of which are brain regions requi
71 dial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex
72 eciprocally connected to parahippocampal and perirhinal cortex, but evidence for functional subregion
73  projections mainly terminated in the dorsal perirhinal cortex, but moderately dense projections were
74  study: Patients with lesions, including the perirhinal cortex, but not patients with damage restrict
75  found that many neurons in both area TE and perirhinal cortex came to elicit more similar neuronal r
76  examined whether excitotoxic lesions of the perirhinal cortex can affect acquisition of a place-obje
77  The discovery that bilateral lesions of the perirhinal cortex can leave configural (structural) lear
78 ures other than the hippocampus, perhaps the perirhinal cortex, can support face recognition memory i
79 re is significantly more BDNF present in the perirhinal cortex compared with the occipital cortex in
80 AD-67 immunohistochemistry, we show that the perirhinal cortex contains GABAergic neurons with long-r
81 ancy by demonstrating that both pSTS and the perirhinal cortex contribute to crossmodal binding in hu
82       It has been suggested that the primate perirhinal cortex contributes exclusively to memory.
83 al (especially spatial) information, whereas perirhinal cortex contributes to and is necessary for fa
84 ch as at the level of an object and that the perirhinal cortex contributes to both memory and percept
85 t findings provide new insights into how the perirhinal cortex contributes to each: first, it contrib
86 perirhinal cortex, only damage to the caudal perirhinal cortex correlated significantly with recognit
87                   Finally, activation in the perirhinal cortex correlated with successful associative
88        Reports that the extent of atrophy in perirhinal cortex correlated with the severity of impair
89  human lesion studies have demonstrated that perirhinal cortex damage impairs complex object discrimi
90            This supports the hypothesis that perirhinal cortex damage impairs the ability to identify
91  of the sensitivity of object recognition to perirhinal cortex damage is not the result of standard h
92 on of medial temporal lobe damage, including perirhinal cortex damage, to impaired semantic knowledge
93              The second factor was extent of perirhinal cortex damage.
94 te the object-recognition deficit seen after perirhinal cortex damage.
95 al atrophy, whereas SD patients have greater perirhinal cortex damage.
96 ections, the density of PHAL(+) axons in the perirhinal cortex decreased steeply with rostrocaudal di
97 not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.
98                               Lesions of the perirhinal cortex did not interfere with acquisition or
99 ceptor-mediated synaptic transmission within perirhinal cortex disrupted encoding for short- and long
100    There was no evidence that lesions of the perirhinal cortex disrupted the ability to learn the con
101                   To investigate whether the perirhinal cortex does contribute to perception, we devi
102 sive to memory and conclude that the macaque perirhinal cortex does contribute to perception.
103  perception of places and paths, whereas the perirhinal cortex does so for objects and the contents o
104 obtained directly from human hippocampus and perirhinal cortex during a recognition paradigm and appl
105 receptor antagonist scopolamine into the rat perirhinal cortex during different stages (encoding, sto
106 cillations in the amygdala, hippocampus, and perirhinal cortex during this next-day memory test indic
107 tions of this region also suggested that the perirhinal cortex extends rostrodorsally to include the
108 esults further demonstrate the importance of perirhinal cortex for object recognition memory and sugg
109 the left posterior inferior frontal and left perirhinal cortex for words and objects, respectively, a
110       Tracing studies have revealed that the perirhinal cortex forms strong reciprocal connections wi
111                     Bilateral lesions of the perirhinal cortex fully spared the capacity to make feat
112 d points to a need to refine those models of perirhinal cortex function that emphasize its role in re
113 ological study of age-related impairments in perirhinal cortex function.
114 ITI, ITR, and more ventral cortex, including perirhinal cortex (group ITR+), with visual learning in
115 efore, we reject the notion that the macaque perirhinal cortex has a role exclusive to memory and con
116     Because the rhinal (i.e., entorhinal and perirhinal) cortex has prominent reciprocal connections
117                     Recent findings from the perirhinal cortex have shed new light on the ways in whi
118 ludes signals that are largely unique to the perirhinal cortex (i.e., object familiarity), consistent
119                        Aspiration lesions of perirhinal cortex impaired performance with type (b) onl
120 ories and add more weight to the role of the perirhinal cortex in associative encoding of objects.
121                              The role of the perirhinal cortex in discriminative eyeblink conditionin
122 providing novel evidence for the role of the perirhinal cortex in episodic intra-item encoding.
123 is study does not support a critical role of perirhinal cortex in learning for visual secondary reinf
124 anterograde amnesia, whereas the role of the perirhinal cortex in learning is dependent on the percep
125    Recent lesion studies have implicated the perirhinal cortex in learning that two objects are assoc
126                                              Perirhinal cortex in monkeys has been thought to be invo
127    These findings suggest a key role for the perirhinal cortex in representing and processing object-
128 n (including the entorhinal cortex), and the perirhinal cortex in two species of macaque monkey.
129 These results indicate an important role for perirhinal cortex in visual learning, memory, or both, a
130  results demonstrate a specific role for the perirhinal cortex in visual perception and establish a f
131 ractions between GluR2 and AP2 blocks LTD in perirhinal cortex in vitro.
132 s induced during whole-cell recording in rat perirhinal cortex in vitro.
133 100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro.
134 e identified regions in both hippocampus and perirhinal cortex in which activity varied as a function
135      A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of
136 gion for crossmodal perceptual features, and perirhinal cortex integrating these features into higher
137 e disease, and that the extent of atrophy in perirhinal cortex is a proxy for the overall severity of
138  by providing converging evidence that human perirhinal cortex is also critically involved in process
139              These findings suggest that the perirhinal cortex is at a higher level than the parahipp
140                                          The perirhinal cortex is critical for novelty detection, and
141 in monkeys and rats has established that the perirhinal cortex is critically involved in object- or s
142                                          The perirhinal cortex is directly connected to this system,
143                       Synaptic plasticity in perirhinal cortex is essential for recognition memory.
144                                      The rat perirhinal cortex is heterogeneous in its efferent conne
145                The findings suggest that the perirhinal cortex is important for memory and not for pe
146 esults, the authors suggest that the role of perirhinal cortex is in "within-object" associations and
147                     It is suggested that the perirhinal cortex is involved in maintaining representat
148                            We argue that the perirhinal cortex is neither specialized for perception
149 and show that under a variety of conditions, perirhinal cortex is not critical for the identification
150    Previously it has been suggested that the perirhinal cortex is part of a pathway processing object
151                                          The perirhinal cortex is preferentially connected with the r
152                                          The perirhinal cortex is reciprocally connected with orbital
153                Our findings suggest that the perirhinal cortex is required for rats to encode familia
154 e fundus suggests that only this part of the perirhinal cortex is similar to area 35 of the primate b
155                              Area 36c of the perirhinal cortex is the main interface between the peri
156 sked whether rhinal (that is, entorhinal and perirhinal) cortex is necessary to associate the visual
157 ated synaptic transmission (EPSC(KA) LTD) in perirhinal cortex layer II/III neurons that is distinct
158                                              Perirhinal cortex lesions also had no apparent effect on
159                       In contrast, rats with perirhinal cortex lesions failed to benefit from increas
160                                              Perirhinal cortex lesions impaired encoding of objects a
161                               The effects of perirhinal cortex lesions in rats on spatial memory migh
162 ir differential exploration times, rats with perirhinal cortex lesions showed very poor discriminatio
163  choose Object B, not Object A (A- vs. B+)." Perirhinal cortex lesions significantly impaired acquisi
164                           The same rats with perirhinal cortex lesions were also unimpaired on a test
165                                    Rats with perirhinal cortex lesions were sequentially trained in a
166                          Following bilateral perirhinal cortex lesions, rats continued to learn visua
167 ehavior has been observed in young rats with perirhinal cortex lesions.
168  is known to be sensitive to hippocampal and perirhinal cortex lesions.
169                                        Rats' perirhinal cortex, like monkeys', subserves object ident
170 obe, indicating that portions of the ventral perirhinal cortex, located on the banks of the sulcus, w
171 nificant correlation was found between total perirhinal cortex loss and degree of recognition impairm
172 ies in macaque monkeys have implied that the perirhinal cortex may also contribute to object percepti
173 n supports the idea that the hippocampus and perirhinal cortex may be critical for the processing of
174 riments thus suggest that alterations in the perirhinal cortex may be responsible for reducing aged a
175         Rather, the cholinergic input to the perirhinal cortex may facilitate acquisition by enhancin
176 evidence to suggest that the hippocampus and perirhinal cortex may mediate processes beyond long-term
177 ocampal lesion studies and evidence that the perirhinal cortex may support object memory.
178 s important for learning and memory, such as perirhinal cortex, may be modifiable in adults.
179  studies suggest that at least one component-perirhinal cortex-might also contribute to perceptual pr
180 imental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or
181 thesis, we recorded from pairs of neurons in perirhinal cortex of macaques while they viewed multiple
182                 We found that neurons in the perirhinal cortex of rats generate sustained firing patt
183                    Local administration into perirhinal cortex of the nitric oxide synthase inhibitor
184 lity or interneuron loss was observed in the perirhinal cortex of these aged, memory-impaired monkeys
185                                          The perirhinal cortex, olfactory tubercle, and most subdivis
186 we tested the effects of DPFE infusions into perirhinal cortex on meth-seeking under two different te
187                                   Within the perirhinal cortex, only damage to the caudal perirhinal
188 eolus vulgaris-leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex.
189 e on this task depends on area TE and not on perirhinal cortex or other medial temporal lobe structur
190 ion of short- and long-range inputs from the perirhinal cortex or temporal neocortex with perirhinal
191 ation of neurons and gliosis occurred in the perirhinal cortex or the hippocampus, with consequent sp
192 hen either received bilateral removal of the perirhinal cortex or were retained as unoperated control
193 anterior hippocampus, entorhinal cortex, and perirhinal cortex over the 30 s retention interval, with
194 t, activity in a different group of regions (perirhinal cortex, parahippocampal cortex, and inferior
195 fore and after this exposure, and found that perirhinal cortex, parahippocampal cortex, subiculum, CA
196 s share common features, suggesting that the perirhinal cortex participates in perceptual discriminat
197                                              Perirhinal cortex (PER) has a well established role in t
198                                              Perirhinal cortex (PER) has a well established role in t
199  role of the postrhinal cortex (POR) and the perirhinal cortex (PER) in processing relational or cont
200                                          The perirhinal cortex (PER) is known to process object infor
201 position that is comparable with that of the perirhinal cortex (PER) with regard to the lateral entor
202                                          The perirhinal cortex (PER), which is critical for associati
203 nation of the object recognition system (the perirhinal cortex) performs this critical function.
204                                          The perirhinal cortex plays a critical role in memory format
205                                          The perirhinal cortex plays a critical role in recognition a
206                                          The perirhinal cortex plays a key role in acquiring knowledg
207 ngs do not rule out the possibility that the perirhinal cortex plays a more general role in memory.
208                 The results suggest that the perirhinal cortex plays a role in discriminative eyeblin
209                                  Whereas the perirhinal cortex plays an essential role in familiarity
210 ther the rhinal cortex (i.e., entorhinal and perirhinal cortex) plays a time-limited role in informat
211 n contrast, activity in both hippocampus and perirhinal cortex positively correlated with the subsequ
212 e studied in rat brain slices containing the perirhinal cortex (PR) and immediately adjacent lateral
213                      The hippocampus and the perirhinal cortex (PR) are reciprocally connected both d
214   Recent work demonstrated the importance of perirhinal cortex (PR) in a variety of behavioral tasks
215                 The polymodal input from the perirhinal cortex (PR) is a major informational gateway
216                   Pretraining lesions of rat perirhinal cortex (PR) severely impair pavlovian fear co
217           Golgi-impregnated neurons from rat perirhinal cortex (PR) were classified into one of 15 di
218 la-fugal cortical areas: area TE2 and dorsal perirhinal cortex (PR), and moderate labeling in the lat
219 s activity in "persistent-firing" neurons of perirhinal cortex (PR).
220  the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be di
221 edial temporal lobe (MTL), in particular the perirhinal cortex (PrC) and hippocampus (HC), are best c
222 merous studies support the importance of the perirhinal cortex (PRC) and parahippocampal cortex (PHC)
223 pal region are functionally divided into the perirhinal cortex (PRC) and the lateral entorhinal corte
224 emporal lobe cortex (MTLC), most notably the perirhinal cortex (PrC) and the parahippocampal cortex (
225                                          The perirhinal cortex (PRC) composed of areas 35 and 36 form
226 is well established that the hippocampus and perirhinal cortex (PrC) encode associative and item repr
227  with the aim of elucidating the role of the perirhinal cortex (PRC) in recognition memory.
228                                          The perirhinal cortex (PRc) is essential for visual recognit
229                                          The perirhinal cortex (PRC) is proposed to both represent hi
230     Although it is well established that the perirhinal cortex (PRC) makes an important contribution
231 s from each sensory stream are integrated in perirhinal cortex (PRc) of the anteromedial temporal lob
232  basis of episodic recollection, whereas the perirhinal cortex (PRc) supports familiarity for individ
233     Specifically, it remains unclear whether perirhinal cortex (PrC) supports item-based familiarity
234  subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC)
235 elated fMRI to address the role of the human perirhinal cortex (PRC), and its interactions with the h
236      For instance, it has been proposed that perirhinal cortex (PRC), parahippocampal cortex (PHC), a
237 MTL), in particular the hippocampus (HC) and perirhinal cortex (PrC), play domain-sensitive roles in
238                    TEd projects primarily to perirhinal cortex (PRC), which in turn projects to later
239                Here, we demonstrate that the perirhinal cortex (PRc), within the MTL, plays a role in
240 nds the contributions of the hippocampus and perirhinal cortex (PrC).
241          In contrast, encoding activation in perirhinal cortex predicted later item recognition, but
242 induced pattern effects in orbitofrontal and perirhinal cortex predicted the magnitude of categorical
243 ns of the left hippocampus, and in bilateral perirhinal cortex, predicted subsequent accuracy on the
244  demonstrate that the level of engagement of perirhinal cortex predicts later memory for individual i
245                                          The perirhinal cortex (PRh) and basolateral amygdala (BLA) a
246  responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a d
247  responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a t
248                                    Damage to perirhinal cortex (PRh) impairs object recognition memor
249                                              Perirhinal cortex (PRh) is strongly implicated in neuron
250                                          The perirhinal cortex (PRh) is widely accepted as having an
251 egions of AAC, such as temporal areas TE3 or perirhinal cortex (PRh), and quantitative analyses were
252                 Microinjections into AMG and perirhinal cortex (PRh), which are not implicated in AGS
253                           Projections to the perirhinal cortex primarily targeted the superficial lay
254                                          The perirhinal cortex processes aspects of recognition memor
255                  Importantly, lesions of the perirhinal cortex produce similar deficits and also lead
256        Viral transduction of this peptide in perirhinal cortex produced striking deficits in visual r
257                               Area 36 of the perirhinal cortex projects preferentially to areas TE an
258                   The rostral portion of the perirhinal cortex receives strong projections from the m
259                                              Perirhinal cortex removal reduced the contribution of on
260                The reduced inhibition in the perirhinal cortex reported here could contribute to this
261 nhuman primates, and humans suggest that the perirhinal cortex represents information about objects f
262                Long-term depression (LTD) in perirhinal cortex requires group I, group II and NMDA re
263                        Infusion of DPFE into perirhinal cortex restored novel object recognition in l
264 of the medial geniculate complex, the dorsal perirhinal cortex, rostral Te2, and Te1.
265 s been implicated in spatial memory, whereas perirhinal cortex seems critical for object memory.
266                               Lesions of the perirhinal cortex severely impaired acquisition of simul
267                          Parahippocampal and perirhinal cortex showed different pattern information p
268 m one item presentation to the next, whereas perirhinal cortex signaled the conjunction of items and
269                            Anatomically, the perirhinal cortex sits at the boundary between the media
270   Furthermore, there was a deficit of LTD in perirhinal cortex slices from virally transduced, recogn
271        In support of this, we demonstrate in perirhinal cortex slices that blocking mechanisms underl
272 chniques to provide strong evidence that the perirhinal cortex subserves perception and suggests that
273 e medial temporal lobe (MTL)--in particular, perirhinal cortex--support not just memory but certain k
274 the alERC as an extension of the neighboring perirhinal cortex, supporting object memory.
275  supports recollection and that the adjacent perirhinal cortex supports familiarity.
276 Specifically, it has been suggested that the perirhinal cortex supports the perceptual abilities need
277  these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual reco
278  a form of long-term depression (LTD) in the perirhinal cortex that relies on interaction between dif
279 ng neurons were also observed in the insular/perirhinal cortex, the ventromedial/ventrolateral thalam
280                  The precise contribution of perirhinal cortex to human episodic memory is uncertain.
281 ll have to extend beyond the hippocampus and perirhinal cortex to incorporate a wider network of cort
282 n damage have revealed the importance of the perirhinal cortex to object recognition memory.
283 s in prefrontal, amygdaloid, entorhinal, and perirhinal cortex, to which there are few projections fr
284 uman memory: whether the hippocampus and the perirhinal cortex, two key components of the medial temp
285 rocess critical for the expression of LTD in perirhinal cortex, underlies visual recognition memory.
286 ne transfer to these postsynaptic neurons in perirhinal cortex used a His tag antibody, as the peptid
287 activation of amygdaloid nuclei, the ventral perirhinal cortex (vPRh), and several other brain areas
288 ccelerated function and that activity in the perirhinal cortex was associated with a statistically di
289                           In synapses in the perirhinal cortex, we have directly compared the Ca(2+)
290 iments, rats with excitotoxic lesions of the perirhinal cortex were found to be indistinguishable fro
291 The differential efferent projections of the perirhinal cortex were traced by using anterograde and r
292 ns bilaterally in hippocampus, as well as in perirhinal cortex, where activity during learning increa
293              These forms of LTD occur in the perirhinal cortex, where long-term decreases in neuronal
294 ted match and mismatch signals in the monkey perirhinal cortex, where match signals were selective fo
295 ted intrinsic functional connectivity of the perirhinal cortex, which is typically the first brain re
296 nterior medial temporal lobes, including the perirhinal cortex, which serve to integrate complex obje
297 at can be divided into a rostral region, the perirhinal cortex, which shares features of the monkey p
298 c information is uniquely represented in the perirhinal cortex, which was also increasingly engaged f
299 dy highlights the critical importance of the perirhinal cortex within the temporal lobe for recogniti
300 t addressed whether selective lesions of the perirhinal cortex would result in a delay-dependent defi

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top