戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ycin-induced DSBs possess 3'-ends blocked by phosphoglycolate.
2  to ionize the C-2 proton of either 2-PGA or phosphoglycolate.
3 bound to the reaction-intermediate analog, 2-phosphoglycolate (2-PGA).
4 several previous studies, Ape1 hydrolyzed 3'-phosphoglycolates 25-fold more slowly than C-4-keto-C-1-
5 structure of the transition-state analogue 2-phosphoglycolate (2PG) bound to methylglyoxal synthase (
6                                            2-Phosphoglycolate (2PG) is one of the shared metabolites
7 tion of base-propenal and gapped DNA with 3'-phosphoglycolate (3'-PG) and 5'-phosphate (5'-P) ends.
8              DNA strand breaks containing 3'-phosphoglycolate (3'-PG) ends are the major lesions indu
9 sion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, ch
10 mum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3' to the cleavage site, as well as 2
11  to 2',3'-cyclic phosphate, 3'-phosphate, 3'-phosphoglycolate, 5'- hydroxyl and 5'- phosphate, which
12 2) and leads to the same set of products (3'-phosphoglycolate, 5'-phosphate, and base propenal) as fo
13 methylene-2-furanone (6), oligonucleotide 3'-phosphoglycolates (7), malondialdehyde equivalents (8 or
14 les that of the substrate but differs from 2-phosphoglycolate, a tight binding inhibitor, and phospha
15  an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygena
16 of crystal structures with either Fru-6-P or phosphoglycolate, an analog of PEP, bound have shown tha
17 ze other 3'-end DNA alterations including 3'-phosphoglycolate and 3'-abasic sites, and exhibits 3'-nu
18 at mimic the binding geometry of PEP, namely phosphoglycolate and 3-phosphonopropionate, are found to
19 sites and formation of strand breaks with 3'-phosphoglycolate and 5'-phosphate ends.
20 2-phosphosulfolactate, (S)-2-phospholactate, phosphoglycolate and both enantiomers of 2-phosphomalate
21 vels of the photorespiratory intermediates 2-phosphoglycolate and glycine are increased under high CO
22 variety of other 3' adducts from DNA such as phosphoglycolates and abasic or apurinic/apyrimidinic (A
23 y and repair activities on 3'-phosphates, 3'-phosphoglycolates, and 3'-trans-4-hydroxy-2-pentenal-5-p
24                          Upon the binding of phosphoglycolate, Arg-162 is virtually replaced by Glu-1
25 th earlier data showing that Tdp1 can use 3'-phosphoglycolate as a substrate, these data suggest that
26 of EDTA, catalyzed removal of glycolate from phosphoglycolate at a single-stranded 3' terminus to lea
27  a 38mer duplex, but acted more slowly on 3'-phosphoglycolates at a 19 base-recessed 3'-terminus, at
28         In combination with the results of 2-phosphoglycolate binding studies, a catalytic mechanism
29  observed that the structure with inhibitor (phosphoglycolate) bound, compared to the structure of wi
30                                In the Mn(2+)-phosphoglycolate complex of lobster muscle enolase, the
31            Vectors with blunt or cohesive 3'-phosphoglycolate ends yielded single repair products cor
32  substrate with 5'-overhangs and recessed 3'-phosphoglycolate ends.
33 C-1-aldehydes in unbroken DNA strands and 3'-phosphoglycolate esters terminating strand breaks.
34 nown factors may contribute to removal of 3'-phosphoglycolate esters.
35 ls contain potent activity for removal of 3'-phosphoglycolates from single-stranded oligomers and fro
36          Recombinant Ape efficiently removed phosphoglycolates from the 3'-terminus of an internal 1
37 the photorespiratory pathway intermediates 2-phosphoglycolate, glycolate, and glycine, suggest that t
38                                         A 3'-phosphoglycolate had little effect on Artemis-mediated t
39 is enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic propertie
40 mplex differs from the Pb(2+)-PEP and Mn(2+)-phosphoglycolate interactions in two enzymatically inact
41 G).d(CCCAGTACTTTGG), where X represents a 3'-phosphoglycolate lesion next to a 5'-phosphate.
42 substrates, bearing either 3'-hydroxyl or 3'-phosphoglycolate moieties, was examined.
43 d containing a double strand break with a 3'-phosphoglycolate on a 3-base 3' overhang was incubated i
44  sequence ions and confirmed the presence of phosphoglycolate on the 3'-terminal fragments only.
45  was no detectable activity of Ape toward 3'-phosphoglycolates on 1 or 2 base protruding single-stran
46                                  However, 3'-phosphoglycolates on overhangs of 4-5 bases promoted Art
47             For a blunt end with either a 3'-phosphoglycolate or 3'-hydroxyl terminus, endonucleolyti
48                                        One 2-phosphoglycolate (P-glycolate) molecule is produced for
49 hen applied to the indirect effect, detected phosphoglycolate (pg) and thymine glycol (Tg).
50                              Glycolate and 2-phosphoglycolate (PG) are 2-carbon monocarboxylic acids
51 s devised for quantitative measurement of 3'-phosphoglycolate (PG) termini on DSBs induced by the non
52 plex with Mn(2+) and the substrate analog, 2-phosphoglycolate (PGL), was determined by molecular repl
53 to the 3' end of DNA, and can also remove 3'-phosphoglycolates (PGs) formed by free radical-mediated
54 ate docking showed that the high-specificity phosphoglycolate phosphatase (PDB entry ) uses a single
55 totrophic bacteria, cbbZ was shown to encode phosphoglycolate phosphatase (PGP), whereas the identiti
56 ic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophil
57 explored HAD family member (gene annotation, phosphoglycolate phosphatase), which we termed AUM, for
58 ucture with those of other type IIB enzymes (phosphoglycolate phosphatase, trehalose-6-phosphate phos
59                 We identified that mammalian phosphoglycolate phosphatase, with an uncertain function
60 with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase.
61 idence presented for TA0175 is indicative of phosphoglycolate phosphatase.
62 milar kinetic properties seen for eukaryotic phosphoglycolate phosphatase.
63            In contrast to previously studied phosphoglycolate phosphatases, ComB has a low pH optimum
64 erhang was incubated in human cell extracts, phosphoglycolate processing proceeded rapidly for the fi
65                                              Phosphoglycolate removal by Ape was detected as a shift
66 ngle repair products corresponding to simple phosphoglycolate removal followed by ligation, while a v
67  only blocked rejoining, but also suppressed phosphoglycolate removal, implying an early, essential,
68 cise 3'-blocking termini, e.g. phosphate and phosphoglycolate residues, from DNA.
69 ve inhibition by the intermediate analogue 2-phosphoglycolate, resulting from the loss of stabilizing
70 spectroscopic titration with the inhibitor 2-phosphoglycolate revealed that the mutants have a differ
71 btain homogeneous preparations of defined 3'-phosphoglycolate substrates for repair studies, 5'-(32)P
72 ate from single-stranded DNA containing a 3'-phosphoglycolate, suggesting a role for Tdp1 in repair o
73 -mediated double-strand break, with cohesive phosphoglycolate-terminated 3'-overhangs and a one-base
74 ficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3' overhang, while le
75 ein kinase (DNA-PK), Artemis slowly trims 3'-phosphoglycolate-terminated blunt ends.
76 n, and neocarzinostatin, which all induce 3'-phosphoglycolate-terminated double strand breaks.
77 eps using a sensitive and highly specific 3'-phosphoglycolate-terminated oligonucleotide-based assay
78                                   Shorter 3'-phosphoglycolate-terminated overhangs and blunt ends wer
79  Single- and double-strand breaks bearing 3'-phosphoglycolate termini are among the most frequent les
80 e, labeled with [alpha-32P]dCTP, contains 3'-phosphoglycolate termini produced by bleomycin-catalyzed
81 leavage reactions reveal 5'-phosphate and 3'-phosphoglycolate termini that are derived from H-atom ab
82 ates scattered AP sites, and the DSB have 3'-phosphoglycolate termini that require Ape1 processing.
83 s site-specific double-strand breaks with 3'-phosphoglycolate termini were constructed and treated wi
84 i were joined much faster than those with 3'-phosphoglycolate termini, although both were equally eff
85 rand breaks which contain 3'-phosphate or 3'-phosphoglycolate termini.
86  proficiently cleaves DNA modified with a 3'-phosphoglycolate terminus.
87 nd partial duplexes, each having a single 3'-phosphoglycolate terminus.
88 ain of Glu-167 upon binding of the inhibitor phosphoglycolate trianion (I(3-)), an analog of the ened

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。