戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1  underscoring the specific requirement for a phosphomonoester.
2 cNAc(2) oligosaccharides containing a single phosphomonoester.
3 n atom, forming thiirane with departure of a phosphomonoester.
4  2 membrane phospholipids phosphodiester and phosphomonoester.
5 des to a C(3v) symmetric scaffold that binds phosphomonoesters.
6 at used by protein phosphatases to hydrolyze phosphomonoesters.
7 hydrolytic activity was readily inhibited by phosphomonoesters.
8 lase) was obtained from this and changes in [phosphomonoester].
9    Alkaline or enzymic hydrolysis of 5a gave phosphomonoester alaninate 14, a putative product of int
10                                              Phosphomonoesters also decreased significantly (P < 0.05
11                       In particular, the AZT phosphomonoester amidate 4 displayed comparable antivira
12  by intracellular esterase(s) to give stable phosphomonoester amidate intermediates with a free carbo
13 sm of aromatic amino acid carbomethoxy ester phosphomonoester amidate nucleotide prodrugs by PBMCs do
14 hate, formed in PBMCs incubated with the AZT phosphomonoester amidates 3 and 4 was 2- and 3-fold less
15                                          AZT phosphomonoester amidates are internalized by lymphocyte
16                             In contrast, FLT phosphomonoester amidates are rapidly converted to FLT-5
17 mphocytes, the amino acid carbomethoxy ester phosphomonoester amidates of AZT are not significantly m
18 studies on the amino acid carbomethoxy ester phosphomonoester amidates revealed that their decomposit
19 opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups.
20 zed by hydroxyl/hydroxyl as well as hydroxyl/phosphomonoester and phosphodiester interactions.
21              Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" o
22 catalyzes both the nonspecific hydrolysis of phosphomonoesters and a transphosphorylation reaction in
23            At the cessation of exercise, Pi, phosphomonoesters and CO2 were predicted to account for
24                                            A phosphomonoester at the termini of each arm solubilized
25                             The mechanism of phosphomonoester bond hydrolysis by the PHP family of HP
26 sphodiester derivatives, but strongly to the phosphomonoester-containing glycans with the exception o
27 to soluble carbohydrate ligands (i.e., PPME, phosphomonoester core polysaccharide) and to lymph node
28 nd-order rate constant for hydrolysis of the phosphomonoester dianion is enhanced approximately 2 x 1
29 ilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guan
30 H 7-9.5) was governed by the position of the phosphomonoester group at the inositol ring (PI-4P > PI-
31                 The charge of the respective phosphomonoester group in PI(3,4,5)P(3) is lower than th
32 sphate is found downfield from the other two phosphomonoester group peaks, an increase in pH leads to
33 n the basis of the ability of the respective phosphomonoester group to form intramolecular hydrogen b
34 idylinositol 3,5-bisphosphate, where the two phosphomonoester groups are separated by a hydroxyl grou
35            Differences in the charges of the phosphomonoester groups can be rationalized on the basis
36 rge of the phosphatidylinositol bisphosphate phosphomonoester groups, leading to an overall charge of
37  values between 7 and 9.5 than the other two phosphomonoester groups.
38 he last remaining proton between the vicinal phosphomonoester groups.
39 pports the in-line displacement mechanism of phosphomonoester hydrolysis by alkaline phosphatase and
40 f substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7.0,
41 lkaline phosphatase, which employs a similar phosphomonoester hydrolysis mechanism.
42  show that DNA can catalyze Zn(2+)-dependent phosphomonoester hydrolysis of tyrosine and serine side
43 s enzyme and with established precedents for phosphomonoester hydrolysis.
44                                     Overall, phosphomonoesters in supra-/macro-molecular structures w
45  revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios i
46 bolite concentration changes associated with phosphomonoesters, inorganic phosphate, gamma-nucleotide
47 ransduced tumors in vivo showed lower PC and phosphomonoester levels that were associated with reduce
48 ad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular stru
49 ous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose
50 crease in phosphocholine, total choline, and phosphomonoesters may have potential as noninvasive phar
51 ows for recognition and dephosphorylation of phosphomonoesters of glucose.
52 ant concentration-dependent shift of the two phosphomonoester peaks, suggesting that PI(4,5)P(2) is c
53 ic increase in the mean +/- 1 standard error phosphomonoester (PME) to phosphodiester (PDE) ratios fo
54 /- 1.3% versus 3.9 +/- 0.7%, p = 0.0001) and phosphomonoesters (PMEs) (9.4 +/- 1.2% versus 6.9 +/- 0.
55    (31)P MR peak area ratios of signals from phosphomonoesters (PMEs), inorganic phosphate (P(i)), ph
56                             Treatment of the phosphomonoester product of the PLCBc-catalyzed hydrolys
57 r two Man-P-GlcNAc phosphodiester or Man-6-P phosphomonoester residues was determined by analysis on
58                    Fifteen spectra had large phosphomonoester signals (21% of total phosphorus) that
59 e N15A and S19A mutants were performed using phosphomonoester substrates with varied phenolic leaving
60 itiated calcification by intact MVs, whereas phosphomonoesters such as beta-glycerophosphate or phosp
61 ane phospholipid (MPL) precursor levels (ie, phosphomonoesters that are anabolic metabolites of MPL)
62     In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA
63               Among the low molecular weight phosphomonoesters, the presence of an aromatic ring eith
64 ratio, inorganic phosphate to ATP ratio, and phosphomonoester to ATP ratio were not substantially alt
65 lyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-
66 oxyguanosine nucleotide phosphoramidates and phosphomonoesters were synthesized in high conversion yi
67                                   These soil phosphomonoesters will need to be integrated within curr

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。