戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ase chain reaction analysis of human cardiac poly A+ mRNA.
2 sequences, we demonstrated the presence of a poly(A) mRNA.
3 tion in the first step of the degradation of poly(A) mRNA.
4 hows little enhancement of expression of non-poly(A) mRNA.
5 plied to primer extension analysis of kidney poly(A) mRNA.
6 proteins, or the cytoplasmic localization of poly(A) mRNA.
7 ncomitant increase in dendritic and synaptic poly(A) mRNA.
8 each of which derepresses translation of non-poly(A) mRNA.
9 nd observing a concomitant decrease in total poly(A)+ mRNA.
10  from poly(A)- mRNA but had little effect on poly(A)+ mRNA.
11 l beta2 subunit were cloned from human heart poly(A)(+) mRNA.
12 RNA is described, separating mouse rRNA from poly(A)(+) mRNA.
13 pap1-1 mutation results in reduced levels of poly(A)(+) mRNAs.
14 inguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs.
15                 Slt2 is required for nuclear poly(A(+)) mRNA accumulation upon heat shock, and thermo
16                               Translation of poly(A)- mRNAs after polyadenylation shut-off might resu
17 , we found that sympathetic axons do contain poly(A+) mRNA along their length in a pattern that chang
18  both these changes and increases in tubulin poly A+ mRNA and protein coexist indefinitely after a ne
19 between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export.
20          We show that significant amounts of poly(A)+ mRNAs are oxidized in AD brains.
21 7 mutation derepresses the expression of non-poly(A) mRNA as much as a quadruple ski2 ski3 ski7 ski8
22 nificant percentage of poly(A)-deficient and poly(A)- mRNA associate with smaller polyribosomes compa
23 actions of HuR with beta-actin mRNA and with poly(A)+ mRNA at both native and increased HuR expressio
24 ng the ability to export all RNAs, including poly(A) mRNAs, at the restrictive temperature.
25      First, we show that both poly(A)(-) and poly(A)(+) mRNA become translationally repressed during
26 ts with poly(A) polymerase and with Npl3p, a poly(A)(+) mRNA binding protein implicated in pre-mRNA p
27 ified Sec61alpha,beta and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected rol
28 ength of the 3'UTR increased expression from poly(A)- mRNA but had little effect on poly(A)+ mRNA.
29  the presence of normal amounts of competing poly(A)(+) mRNA, but is normally prevented from doing so
30 hat Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecti
31             Herein, we provide evidence that poly(A)(+) mRNAs can enter P-bodies in yeast.
32  and defense compounds, northern analysis of poly(A)+ mRNA demonstrates that transcripts encoding CYP
33 molog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in se
34 tify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila
35 due to a twofold-increased repression of non-poly(A) mRNA expression.
36 cloned by reverse transcription of juice-sac poly(A)+ mRNA, followed by Taq Polymerase-mediated ampli
37                 Arrays were then probed with poly (A) mRNA from single, microdissected dysplastic neu
38 ter (EAAC1) cDNAs were probed with amplified poly (A) mRNA from tubers or normal neocortex to identif
39 d with probes to TIMP-1 to -4 and GAPDH with poly A+ mRNA from ventricular tissues of patients with i
40  oligo(dt) magnetic bead protocol to harvest poly(A) mRNA from cultured cells in 96-well plates minim
41                       In screening amplified poly(A) mRNA from hippocampal dendrites and growth cones
42 AR1 is transcribed as an 800-nucleotide (nt) poly(A)+ mRNA from a promoter lacking a consensus TATA s
43                    Northern blot analysis of poly(A)+ mRNA from N. benthamiana and N. tabacum cv. MD6
44 t1 showed a single band of approx. 1.6 kb in poly(A)+ mRNAs from epidermis, limb bud or claw muscle a
45 perature and partially restore the levels of poly(A)(+) mRNA in a manner distinct from the cytoplasmi
46 h Pab1p does not diminish the preference for poly(A)(+) mRNA in vivo, indicating another role for pol
47                    Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of diffe
48 protein is localized at the nuclear rim, and poly(A)-mRNA in situ hybridization shows that mRNA expor
49 nslation, allowing better translation of non-poly(A) mRNA, including the L-A virus mRNA which lacks p
50                We now demonstrate that Ram-1 poly(A)+ mRNA increases significantly following culture
51                         Northern analyses of poly(A) mRNA indicated two major species of about 8 and
52 ay facilitate the localization of associated poly(A) mRNAs into axons.
53 o not bind sperm, but injection of total egg poly(A)+ mRNA into immature oocytes confers sperm bindin
54 late that the derepressed translation of non-poly(A) mRNAs is due to abnormal (but full-size) 60S sub
55 use (P:D ratio) of the resulting cytoplasmic poly(A)+ mRNA is a measure of poly(A) site strength.
56                       Northern analysis with poly (A)+ mRNA isolated from different developmental sta
57 a specific reduction of both HuD protein and poly(A) mRNA levels in the axonal compartment.
58 mance: specificity of 1:250,000 in mammalian poly(A(+)) mRNA; limit of detection 0.13 pM; dynamic ran
59                                              Poly(A) mRNA-mRNP complexes were purified from a postmit
60 : the intracellular distribution of cellular poly(A)(+) mRNA, nuclear proteins, and, most important,
61 ski8 mutations enhance the expression of the poly(A)(-) mRNAs of yeast RNA viruses.
62 nter P-bodies, and an mRNP complex including poly(A)(+) mRNA, Pab1p, eIF4E, and eIF4G2 may represent
63 romoting translation from poly(A)(+) but not poly(A)(-) mRNAs, particularly for mRNAs containing seco
64 se the accumulation of the secretory form of poly(A)(+) mRNA relative to the membrane form and regula
65  much higher concentrations of yeast tRNA or poly(A)mRNA, respectively, 33- and 60-fold greater than
66 ors generated from hippocampal and forebrain poly(A)+ mRNA revealed greater sensitivity to 2,3-benzod
67                         Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA
68 ms of a specific mRNA showed relatively more poly(A)- mRNA sedimenting with 20-60 S complexes than do
69 ing, specifically reduces the translation of poly(A)(+) mRNA, suggesting that poly(A) may have a role
70 f p53 and to the inhibition of total RNA and poly(A) mRNA synthesis.
71 oach we have isolated a single cDNA from egg poly(A)+ mRNA that can induce sperm binding in immature
72  pap1-1 mutation results in the synthesis of poly(A)- mRNAs that initiate translation with surprising
73                                          For poly(A)+ mRNA, the translational efficiency and mRNA hal
74                             Hybridization of poly(A)(+) mRNA to DNA microarrays containing 96.4% of y
75  of HYPB/Setd2, like Iws1, induced bulk HeLa poly(A)+ mRNAs to accumulate in the nucleus.
76  factors to mRNA, caused by the inability of poly(A)- mRNAs to accumulate to normal levels.
77 lse-labeling experiments indicate that total poly(A)(+) mRNA transcription was not significantly redu
78                                              Poly(A) mRNA was present in the nucleus and throughout t
79  tubers, we developed a methodology in which poly(A)+ mRNA was amplified from immunohistochemically l
80 ocesses, reverse transcription-PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonuc
81                                              Poly(A)+mRNA was present in the axon tips, and was more
82      The total population of polyadenylated [poly(A)] mRNA was localized in hippocampus using a bioti
83                                              Poly-(A)+ mRNA was isolated for Northern blot analysis.
84 contrast, highly toxic 36R in the context of poly(A)(+) mRNA were exported to the cytoplasm, where DP
85               Tissue-specific libraries from poly(A)(+) mRNA were prepared by priming first and secon
86 sed the expression of nonpolyadenylated [non-poly(A)] mRNAs, whether capped or uncapped, thus explain
87        The labeled granules colocalized with poly(A+) mRNA, with the 60S ribosomal subunit, and with

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。