戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ortical regions, including the precuneus and posterior cingulate.
2 ontal cortex, and decreased MI levels in the posterior cingulate.
3 al cortex, right frontal eye-fields, and the posterior cingulate.
4 uding the striatum, insula, and anterior and posterior cingulate.
5 ng the posterior superior temporal lobes and posterior cingulate.
6  as the frontal cortex, temporal cortex, and posterior cingulate.
7 s. controls, F((2,22)) = 7.0, P = 0.002) and posterior cingulate (-12.1% vs. controls, F((2,22)) = 5.
8 hin-subject change in the thalamus (-11.4%), posterior cingulate (-9%), occipital (-7%), parietal (-7
9           In the present study, we show that posterior cingulate activities responding to heartbeat s
10 ortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas prefe
11                              A midline core (posterior cingulate and anterior medial prefrontal corte
12 ional connectivity than patients between the posterior cingulate and both left fusiform and medial fr
13  The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions
14 with functional imaging results of less left posterior cingulate and extrastriate cortex activation i
15                          The measurements of posterior cingulate and hippocampal glucose metabolism w
16  was significantly higher overall and in the posterior cingulate and lateral temporal regions in the
17  in functional connectivity in the bilateral posterior cingulate and left parietal DMN nodes in DM1 p
18 ted with functional connectivity between the posterior cingulate and medial frontal gyrus for combine
19    A positive functional correlation between posterior cingulate and medial prefrontal cortices, majo
20 ibutable to age or structural atrophy in the posterior cingulate and medial temporal areas.
21 ween particular nodes of the DMN, namely the posterior cingulate and medial temporal cortex.
22 functional connectivity observed between the posterior cingulate and medial temporal regions.
23 e to controls in right middle temporal, left posterior cingulate and parietal cortices (precuneus and
24 f the connections between a medioprefrontal, posterior cingulate and parietal seed regions.
25                  We also found degraded left posterior cingulate and posterior callosal fibers in chr
26 of (1)H-MRS metabolites were obtained in the posterior cingulate and precuneus region.
27 phy were detected in the hippocampus and the posterior cingulate and precuneus regions, and with dise
28 temporal sulcus, parahippocampal cortex, and posterior cingulate and retrosplenial cortex.
29 th ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with pred
30                                         Left posterior cingulate and right dorsal anterior cingulate
31 cally, gray matter concentration in the left posterior cingulate and right dorsal anterior cingulate,
32  limited areas of abnormality centred on the posterior cingulate and rostral temporal lobes, respecti
33  significant slope changes confirmed for the posterior cingulate and ventral striatum.
34 s T2DM patients in the DMN between the seed (posterior cingulate) and bilateral middle temporal gyrus
35  including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefron
36 nge in limbic (anterior cingulate, striatum, posterior cingulate) and executive functioning areas (la
37 la, posterior parietal regions, anterior and posterior cingulate, and dorsolateral prefrontal cortex
38 s of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encod
39 ortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than
40 involving the posterior parietal cortex, the posterior cingulate, and medial temporal lobe structures
41  activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evalu
42 t-sided brain regions (dorsolateral frontal, posterior cingulate, and posterior parietal).
43 k factors correlated with lower total brain, posterior cingulate, and precuneus volumes.
44  the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen.
45 e caudate nucleus, hippocampus, anterior and posterior cingulate, and regions associated with attenti
46 default network, including the precuneus and posterior cingulate, are particularly vulnerable to earl
47 n females than in males, particularly in the posterior cingulate (BA31), precuneus (BA7m) and angular
48 teral angular gyrus (Brodmann area 39), left posterior cingulate (Brodmann area 31) and left nucleus
49 tex (right hemisphere); bilateral precuneus, posterior cingulate, calcarine, and occipital-parietal c
50  frontal, occipital, anterior cingulate, and posterior cingulate cerebral cortices and the cerebellar
51  relative hypometabolism in the thalamus and posterior cingulate compared with those with C9orf72-neg
52 gions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC).
53                                          The posterior cingulate cortex (CGp) is a major hub of the d
54      We investigated the hypothesis that the posterior cingulate cortex (CGp), a region linked to def
55                         We hypothesized that posterior cingulate cortex (CGp), an area linking reward
56 lusters appeared in the medial occipital and posterior cingulate cortex (each left and right).
57 network linking medial prefrontal cortex and posterior cingulate cortex (i.e., the default mode netwo
58  stronger or weaker connectivity between the posterior cingulate cortex (PCC) and DMN regions, depend
59 omprehensive template from core seeds in the posterior cingulate cortex (PCC) and medial prefrontal c
60 ut degrees of cingulate motor area (CMA) and posterior cingulate cortex (PCC) during left-hand MR imp
61                                          The posterior cingulate cortex (PCC) is a central part of th
62     A reduction in glucose metabolism in the posterior cingulate cortex (PCC) predicts conversion to
63 ween the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) regions of the default
64 erent foraging tasks that neurons in primate posterior cingulate cortex (PCC) signal decision salienc
65      We observed directed influence from the posterior cingulate cortex (PCC) to the anterior cingula
66 ealed that responses in the amygdala and the posterior cingulate cortex (PCC) were stronger while enc
67 grity of macromolecular protein pools in the posterior cingulate cortex (PCC), a central DMN hub regi
68 tex (DLPFC), medial frontal/cingulate gyrus, posterior cingulate cortex (PCC), and ventromedial prefr
69 g characteristic (ROC) curve analysis of the posterior cingulate cortex (PCC), and voxel-based morpho
70  the ventromedial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), parahippocampus, insul
71 eticular formation, basal ganglia, thalamus, posterior cingulate cortex (PCC), precuneus, and cerebel
72 er PiB retention in AD-affected anterior and posterior cingulate cortex (PCC), precuneus, parietal, t
73 lled the default network, which includes the posterior cingulate cortex (PCC), retrosplenial cortex,
74 patterns were obtained in anterior (ACC) and posterior cingulate cortex (PCC), superior frontal gyrus
75 ving in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), upper precuneus (UPCU)
76 g conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subj
77 erable uncertainty about the function of the posterior cingulate cortex (PCC).
78 ncephalography data localized the ERN to the posterior cingulate cortex (PCC).
79 ssing including the fusiform gyrus (FFG) and posterior cingulate cortex (PCC).
80 des of the DMN: medial prefrontal cortex and posterior cingulate cortex (PCC).
81 PFC FC with other DMN regions, including the posterior cingulate cortex (PCC)/precuneus (PCu) and ret
82 strated modifications of the activity of the posterior cingulate cortex (PCC)/precuneus and dorsolate
83  as a seed, increased rsFC strength with the posterior cingulate cortex (PCC)/precuneus was seen in t
84 physiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (
85 anterior cingulate cortex (pACC) and ventral posterior cingulate cortex (vPCC)-regions possibly affec
86 er uncertainty is negatively correlated with posterior cingulate cortex activity.
87 inked to the default mode network, including posterior cingulate cortex and angular gyrus.
88 crete regions of increased activation in the posterior cingulate cortex and anterior insula in respon
89 tion reduced functional connectivity between posterior cingulate cortex and bilateral anterior cingul
90 antia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum.
91 mporal lobe degeneration-there is also early posterior cingulate cortex and diencephalic damage.
92 ng-state functional connectivity between the posterior cingulate cortex and dorsolateral prefrontal c
93                                          The posterior cingulate cortex and frontal eye field represe
94 ith reduced short-range and long-range FC in posterior cingulate cortex and medial prefrontal cortex.
95 g lateral temporoparietal cortex, precuneus, posterior cingulate cortex and middle frontal gyrus.
96 p had greater connectivity between the right posterior cingulate cortex and other brain areas.
97 s in (1) functional connectivity between the posterior cingulate cortex and regions across the brain,
98 etabolism in the bilateral MTL and precuneus-posterior cingulate cortex and right lingual gyrus (r(2)
99 ation of the ventromedial prefrontal cortex, posterior cingulate cortex and right superior frontal gy
100  as well as a neural system encompassing the posterior cingulate cortex and superior frontal gyrus.
101 tive in the absence of a task, including the posterior cingulate cortex and the superior frontal gyru
102 unction, dorsal premotor cortex, insula, and posterior cingulate cortex bilaterally.
103     We have previously shown abnormally high posterior cingulate cortex connectivity in the chronic p
104  Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and incre
105 ons of neural responses to heartbeats in the posterior cingulate cortex covary with changes in bodily
106        Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be expl
107                    vmPFC, mid-cingulate, and posterior cingulate cortex encoded the relative value be
108 tal cortex during response selection and the posterior cingulate cortex for cognitive processes.
109  to be statistically significant only in the posterior cingulate cortex for the WBN data.
110 Our own work has consistently shown abnormal posterior cingulate cortex function following traumatic
111                                Understanding posterior cingulate cortex function is likely to be of c
112       One influential hypothesis is that the posterior cingulate cortex has a central role in support
113                                     Aberrant posterior cingulate cortex hyperconnectivity was linked
114  was seen in the superior temporal gyrus and posterior cingulate cortex in 22q11DS relative to nondel
115 uence of the medial prefrontal cortex on the posterior cingulate cortex in depression is a neural cor
116 cortex had a "hyperregulatory" effect on the posterior cingulate cortex in the depressed group, with
117 in the right inferior frontal cortex and the posterior cingulate cortex increased with age.
118 stems theory, and we propose that the dorsal posterior cingulate cortex influences attentional focus
119                                          The posterior cingulate cortex is a highly connected and met
120  mainly represented the SV for food, and the posterior cingulate cortex mainly represented the SV for
121                     In particular, the right posterior cingulate cortex may act as a critical informa
122 nd in both the anterior cingulate cortex and posterior cingulate cortex of patients with first-episod
123 in vivo in the anterior cingulate cortex and posterior cingulate cortex of the subjects by using the
124 similarity, or consistent processing, in the posterior cingulate cortex predicts associative memory f
125 ning, and not relaxation training, increased posterior cingulate cortex rsFC with left dlPFC (p < .05
126 tum, medial prefrontal cortex, amygdala, and posterior cingulate cortex satisfy necessary and suffici
127 on level-dependent fMRI and a restrosplenial/posterior cingulate cortex seed, aged rats demonstrated
128  topology of the default network, based on a posterior cingulate cortex seed, consistent with prior r
129 e tested for alterations in DMN rsFC using a posterior cingulate cortex seed-based analysis and found
130                                          The posterior cingulate cortex showed increased pattern simi
131 between the medial prefrontal cortex and the posterior cingulate cortex than in the control group (od
132 nce for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact
133                      In both hippocampus and posterior cingulate cortex we identified an extensive ar
134 sed activation in the ventral medial PFC and posterior cingulate cortex with age.
135 ted increased functional connectivity of the posterior cingulate cortex with medial temporal lobe reg
136  hippocampus/parahippocampal gyrus; and, (2) posterior cingulate cortex with supplementary motor area
137 ction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less common
138 hole-brain analyses initiated by seeding the posterior cingulate cortex, a region of high amyloid bur
139 er, prestimulus connectivity between FFA and posterior cingulate cortex, a region of the default netw
140 ncreased activation of the left amygdala and posterior cingulate cortex, along with blunted responses
141 ain activations in temporoparietal junction, posterior cingulate cortex, and dorsal medial prefrontal
142 luctuation in the orbital frontal cortex and posterior cingulate cortex, and exhibited increased rest
143 edial orbitofrontal cortex, temporal cortex, posterior cingulate cortex, and precuneus, compared with
144  conditioning, as well as in the cerebellum, posterior cingulate cortex, and putamen during extinctio
145 omedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), a
146 ventral striatum, anterior cingulate cortex, posterior cingulate cortex, and right anterior insula.
147 ampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus.
148 gdala, parahippocampus, insula, anterior and posterior cingulate cortex, and several primary sensory
149 al inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral pref
150 nectivity of the hypothalamus, amygdala, and posterior cingulate cortex, each probing a distinct netw
151 d regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex
152 ional characteristics of amyloid-beta in the posterior cingulate cortex, hippocampus and cerebellum o
153 regions, including medial prefrontal cortex, posterior cingulate cortex, hippocampus, and supplementa
154 .05) lower in SCZs in the amygdala, caudate, posterior cingulate cortex, hippocampus, hypothalamus, a
155 ic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribut
156 insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, poste
157  the human "default-mode network," including posterior cingulate cortex, orbital prefrontal cortex, a
158 cting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and me
159 revealed a set of brain regions, such as the posterior cingulate cortex, parahippocampal gyri, and fr
160 racted from seed regions in the hippocampus, posterior cingulate cortex, precuneus and primary visual
161 lateral and medial temporal lobe structures, posterior cingulate cortex, precuneus, and medial prefro
162 nd lateral frontal cortices, insular cortex, posterior cingulate cortex, precuneus, and occipital cor
163 formation, through its interactions with the posterior cingulate cortex, precuneus, dorsomedial PFC,
164 dial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001).
165 fect correlated with brain morphology of the posterior cingulate cortex, superior temporal gyrus, ins
166 ed to patient's outcome were frontal cortex, posterior cingulate cortex, thalamus, putamen, pallidum,
167 ory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the res
168 during subsequent rest, rostral anterior and posterior cingulate cortex, ventral striatum, and insula
169 uents of the canonical default-mode network (posterior cingulate cortex, ventromedial/dorsomedial pre
170 e pretraining to posttraining alterations in posterior cingulate cortex-dlPFC rsFC statistically medi
171 ross pedalism in the left pSTS and bilateral posterior cingulate cortex.
172 ntromedial prefrontal cortex, interacts with posterior cingulate cortex.
173 DCS enhanced connectivity of the left dorsal posterior cingulate cortex.
174  associated with motor control in the dorsal posterior cingulate cortex.
175 ted greater activation within the insula and posterior cingulate cortex.
176 isruption in the ventromedial prefrontal and posterior cingulate cortex.
177 he temporal pole and the caudal anterior and posterior cingulate cortex.
178 right lateral parietal lobules, and the left posterior cingulate cortex.
179 ventrolateral prefrontal cortex, insula, and posterior cingulate cortex.
180 rved with the middle temporal cortex and the posterior cingulate cortex.
181 late/supplementary motor area, and bilateral posterior cingulate cortex.
182 e network (DMN), including the precuneus and posterior cingulate cortex.
183 htly greater gray matter volumes in the left posterior cingulate cortex.
184 ior and superior colliculus and anterior and posterior cingulate cortex.
185  connecting the parahippocampal gyrus to the posterior cingulate cortex.
186 vely signed for stimulation-avoiders, in the posterior cingulate cortex.
187 ometabolism, restricted to the retrosplenial/posterior cingulate cortex.
188 tivity between the parahippocampal gyrus and posterior cingulate cortex.
189 ctivation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus.
190 asure neurotransmitter concentrations in the posterior cingulate cortex/precuneus (PCC/PCu), a key co
191       We found that an ROI consisting of the posterior cingulate cortex/precuneus and the medial fron
192 twork, as well as the pathway connecting the posterior cingulate cortex/precuneus with the thalamus,
193 gnitive impairment in typical cortical hubs (posterior cingulate cortex/precuneus), strongly overlapp
194 ncluding medial prefrontal cortex (MPFC) and posterior cingulate cortex/precuneus.
195 , including medial prefrontal cortex (MPFC), posterior cingulate cortex/retrosplenial (PCC/Rsp), infe
196 tal gyri (IFG), left posterior IFG, SMG, and posterior cingulate cortices (PCC).
197 y lower in the parietotemporal, frontal, and posterior cingulate cortices and hippocampus of mild AD
198 in the precentral, prefrontal, fusiform, and posterior cingulate cortices before CBT-I.
199 enhanced activation in medial prefrontal and posterior cingulate cortices during goal-directed action
200 rbitofrontal, lateral temporal and precuneus/posterior cingulate cortices in Alzheimer's disease.
201  default-mode network (medial prefrontal and posterior cingulate cortices) were relatively deactivate
202 tivity in the ventral anterior cingulate and posterior cingulate cortices, components of a circuit in
203 ral responses in ventromedial prefrontal and posterior cingulate cortices, core nodes of the "default
204  in the precuneus, medial orbitofrontal, and posterior cingulate cortices, i.e., several of the core
205 bolism in the visual association (BA 18) and posterior cingulate cortices, with mild involvement also
206 signals source-localized to the anterior and posterior cingulate cortices.
207  brain's; default network (e.g. anterior and posterior cingulate corticies), indicating that patients
208  was stronger in R than NR between the right posterior cingulate (cue-alpha) and the left fusiform gy
209 or multiple comparisons), less precuneus and posterior cingulate deactivation (all p<0.010 after corr
210 rsolateral-prefrontal activation and reduced posterior cingulate deactivation, whereas OCD patients s
211 parahippocampal activations and precuneus or posterior cingulate deactivations, regional grey matter
212 lationships in bilateral posterior parietal, posterior cingulate, dorsal anterior cingulate (ACC), an
213 upling in experienced meditators between the posterior cingulate, dorsal anterior cingulate, and dors
214                                              Posterior cingulate epilepsy (PCE) is misleading because
215 sal and pregenual anterior cingulate cortex, posterior cingulate extending into the precuneus/cuneus
216 ed with higher integrity of left-hemispheric posterior cingulate fibers.
217                               A reduction in posterior cingulate functional connectivity mediated by
218  gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0
219  were significant group differences in their posterior cingulate glucose metabolism measurements (P =
220 ithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduct
221 allows neuropathologic quantification in the posterior cingulate gray matter.
222                                       In the posterior cingulate group, all 4 patients had electrocli
223 n the angular (1.40 vs. 1.48, P < 0.001) and posterior cingulate gyri ROIs (1.63 vs. 1.72, P < 0.001)
224 CI and AD patients had decreased rCBF in the posterior cingulate gyrus (P = .01) with extension to th
225 anterior ventral precuneus (BA7), along with posterior cingulate gyrus (PCC, BA23, sad condition) and
226 his study revealed that the network from the posterior cingulate gyrus and the semiology of PCE (moto
227 es) who underwent antemortem (1)H-MRS of the posterior cingulate gyrus at 3 tesla were included in th
228                                              Posterior cingulate gyrus epilepsy may present with elec
229 es in semantic dementia, and hippocampus and posterior cingulate gyrus in Alzheimer's disease.
230 /myoinositol (mI), and mI/Cr measured in the posterior cingulate gyrus reveal evidence of disease pro
231 ng electrophysiological connections from the posterior cingulate gyrus to parietal, temporal, mesial
232 istochemical evaluation was performed on the posterior cingulate gyrus using antibodies to synaptic v
233 s, entorhinal cortex, parahippocampal gyrus, posterior cingulate gyrus, cortex of the temporal lobes
234 relative to control participants, within the posterior cingulate gyrus, hippocampus, and other region
235 or cingulate gyrus) and parietal (precuneus, posterior cingulate gyrus, inferior parietal lobule (IPL
236 nd greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal l
237 ex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive
238 rietal, and temporal cortices as well as the posterior cingulate gyrus, precuneus, and mesial tempora
239 r temporal gyri; superior parietal lobe; and posterior cingulate gyrus, resulted in a fitted accuracy
240  later accumulation of cNFT pathology in the posterior cingulate gyrus.
241 reactivity and both NAA/Cr and NAA/mI in the posterior cingulate gyrus.
242  evoked responses in the hippocampus and the posterior cingulate gyrus.
243 d have implications for the aetiology of the posterior cingulate hypoactivity in Alzheimer's disease,
244       We found greater connectivity with the posterior cingulate in dementia with Lewy bodies and wit
245 ital lobe, lingual gyrus, cuneus, precuneus, posterior cingulate, inferior parietal lobe, supramargin
246 ital lobe, lingual gyrus, cuneus, precuneus, posterior cingulate, inferior parietal lobe, supramargin
247 the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's
248 xtracted from a priori regions including the posterior cingulate, lateral parietal, and medial prefro
249 ion coefficient, 197.4-275; P < .001) in the posterior cingulate, lateral parietal, hippocampal, and
250 bolism than late-onset patients in precuneus/posterior cingulate, lateral temporo-parietal and occipi
251 n in bilateral vlPFC, bilateral anterior and posterior cingulate, medial frontal gyrus, and bilateral
252 f body-ownership and self-location, with the posterior cingulate mediating between them.
253 n (18)F-FDG PET, whereas relative sparing of posterior cingulate metabolism compared with precuneus/c
254                                              Posterior cingulate metabolism decreased when both amylo
255 nces in DVR values in the frontal, parietal, posterior cingulate, MTL, lateral temporal (LTL), and gl
256 right striatum, the parietal cortex, and the posterior cingulate on negative feedback trials, relativ
257  cortex, and MI levels were decreased in the posterior cingulate (P = .002).
258 anterior cingulate (ACC) and medial parietal/posterior cingulate (PCC) cortices.
259 th hypometabolism in orbitofrontal (OFC) and posterior cingulate (PCC) cortices.
260 s (NA), frontal cortex (FCX), amygdala (AY), posterior cingulate (PCNG), striatum (STR), hippocampus
261 0.05) as well as expanded gray matter in the posterior cingulate (Pcorrected <0.05), and these change
262 re were significant hypometabolic effects in posterior cingulate, precuneus, and parietal regions but
263 betapir binding was seen in the anterior and posterior cingulate, precuneus, and parietotemporal and
264 obe, temporal-parietal association cortices, posterior cingulate, precuneus, hippocampus, amygdala, c
265                                          The posterior cingulate, precuneus, insula and superior temp
266 l (premotor and supplementary motor cortex), posterior cingulate, precuneus, lateral occipital, tempo
267 atch revealed significant differences in the posterior cingulate, precuneus, left insula and superior
268 ontal cortex (PFC) but increased GBCr in the posterior cingulate, precuneus, lingual gyrus, and cereb
269 D-affected mean cortical, frontal, temporal, posterior cingulate-precuneus, parietal, and basal gangl
270 TG), angular gyrus, ventral temporal cortex, posterior cingulate/precuneus (PC), and lateral and dors
271                             In addition, the posterior cingulate/precuneus region, medial prefrontal
272                    Whereas angular gyrus and posterior cingulate/precuneus were significantly activat
273 fMRI response (deactivation) of DMN regions (posterior cingulate/precuneus, medial prefrontal cortex)
274 ildhood stress had reduced activation in the posterior cingulate/precuneus, middle temporal gyrus, an
275 ver, the strength of this correlation in the posterior cingulate predicted the amount of information
276 rally), left middle temporal gyrus and right posterior cingulate prior to treatment.
277 firmed epilepsy arising from the anterior or posterior cingulate region.
278 ess reductions, particularly in parietal and posterior cingulate regions extending into the precuneus
279 e brain, with a focus on the hippocampus and posterior cingulate regions.
280 The posteromedial cortex (PMC) including the posterior cingulate, retrosplenial cortex, and medial pa
281                This prominently included the posterior cingulate/retrosplenial cortex, as in each pre
282 e and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal r
283 eement across the species, with nodes of the posterior cingulate showing high degree and betweenness
284 ations over a 2-year period, using a midline posterior cingulate single-voxel point resolved spectros
285 ase of microglial activation in anterior and posterior cingulate, striatum, frontal, temporal, pariet
286 ions are integrated in medial prefrontal and posterior cingulate structures, with the amygdala acting
287 ts correlated with increased activity in the posterior cingulate (t = 4.11).
288  anterior temporal, dorsolateral prefrontal, posterior cingulate, temporal fusiform and occipitotempo
289  temporal, precuneus, lateral orbitofrontal, posterior cingulate, thalamus and ventral diencephalon w
290 imbic structures, including the anterior and posterior cingulate, the inferior frontal gyrus (IFG), a
291 better with SUVRWM (Pearson r: from 0.63 for posterior cingulate to 0.89 for precuneus, P < 0.0001) t
292 e bilateral occipitotemporal activation from posterior cingulate to anteromedial temporal cortex.
293                 A ratio of metabolism in the posterior cingulate to precuneus plus cuneus was calcula
294                                       In the posterior cingulate, treatment-related changes in serum
295          SV-tracking activity emerged in the posterior cingulate, ventral striatum, anterior cingulat
296 ross research sites, a region located in the posterior cingulate/ventral precuneus (BA 23/31) was the
297         Total MoCA score was associated with posterior cingulate volume (standardized estimate, 0.13;
298 olesterol levels were associated with larger posterior cingulate volume, and higher triglyceride leve
299  decrease of the T1/T2-weighted ratio in the posterior cingulate was related to performance in attent
300                       Functional coupling of posterior cingulate with striatum and amygdala was also

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top