コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 the loss of H-ras-induced cell cycle arrest (premature senescence).
2 cells and found that such treatment induced premature senescence.
3 nificantly inhibits oxidative stress-induced premature senescence.
4 ion of ROS in a manner that is essential for premature senescence.
5 to mitotic failure, genomic instability, and premature senescence.
6 (MTH1), sufficed to induce a DDR as well as premature senescence.
7 se persistent accumulation of ROS and induce premature senescence.
8 ht inhibits plant growth and can also induce premature senescence.
9 us allowing SnoN to stabilize p53 and induce premature senescence.
10 r bodies where it stabilizes p53, leading to premature senescence.
11 dative stress and increases oncogene-induced premature senescence.
12 e activation of p38alpha and p38gamma caused premature senescence.
13 and aneuploidy accompanied by high levels of premature senescence.
14 p21(Waf1/Cip1) protein expression and induce premature senescence.
15 dh1 in primary human fibroblasts resulted in premature senescence.
16 replicative capacity in culture, leading to premature senescence.
17 proliferative defects but did not result in premature senescence.
18 s involves the induction of IGF-1R-dependent premature senescence.
19 f the effectors downstream of p53 to promote premature senescence.
20 of the p53 family and mediates p53-dependent premature senescence.
21 ly shown to be up-regulated in K-ras-induced premature senescence.
22 normal human diploid fibroblasts results in premature senescence.
23 or participates in RAS- and p38 MAPK-induced premature senescence.
24 liferation rate, impaired S phase entry, and premature senescence.
25 es may define the mechanism of activation of premature senescence.
26 olin-1 protein expression and development of premature senescence.
27 and G(2)/M phases, increased apoptosis, and premature senescence.
28 le progression and cell migration and elicit premature senescence.
29 MAPK signaling engage HBP1 and RB to trigger premature senescence.
30 Ectopic expression of MKP2 results in premature senescence.
31 betaG expression, reduced proliferation, and premature senescence.
32 bfertility and, in a transgenic mouse model, premature senescence.
33 ak4 inhibits cell proliferation and promotes premature senescence.
34 --> p21 transcription and the development of premature senescence.
35 ras induces a stable growth arrest known as premature senescence.
36 somerase with short interfering RNA triggers premature senescence.
37 li or oncogenes often causes them to undergo premature senescence.
38 tive mutants of E1A, respectively, to rescue premature senescence.
39 cells, which were resistant to Raf-mediated premature senescence.
40 ing to irreversible proliferation arrest and premature senescence.
41 d differentiation, increased polyploidy, and premature senescence.
42 , including accelerated telomere erosion and premature senescence.
43 early-passage KCs undergo confluency-induced premature senescence.
44 being able to form nodules but with signs of premature senescence.
45 d to acquire genetic alterations that bypass premature senescence.
46 tosis, whereas BU does so mainly by inducing premature senescence.
47 dominant negative activity, inducing p16 and premature senescence.
48 tection of chromosome ends induced immediate premature senescence.
49 ced PML expression was sufficient to promote premature senescence.
50 e similarly to wild-type MEFs and exhibit no premature senescence.
51 ty to ionizing radiation, growth defects and premature senescence.
52 d lymphocytes (PBLs), which may be linked to premature senescence.
53 xygen species-induced acetylation of p53 and premature senescence.
54 cy in mice activates cell death programs and premature senescence.
55 ing to features and diseases associated with premature senescence.
56 fork stalling, reduction of fork speed, and premature senescence.
57 SiR plays an important role in prevention of premature senescence.
58 n by IRE1alpha is essential for HRas-induced premature senescence.
59 ary for proper control of the cell cycle and premature senescence.
60 s leads to induction of these inhibitors and premature senescence.
61 oblasts resulted in proliferative arrest and premature senescence.
62 ts Ataxin-1 and Snurportin-1, and preventing premature senescence.
63 ycle arrest and mediating DNA damage-induced premature senescence.
64 related to a severe deficiency in UV-induced premature senescence.
65 ase activity and upregulated p16, indicating premature senescence.
66 s-induced activation of p53 and induction of premature senescence.
67 eactive oxygen species (ROS) is critical for premature senescence, a process significant in tumor sup
68 DHX9 in primary human fibroblasts results in premature senescence, a state of irreversible growth arr
69 ents are characterized by slow growth rates, premature senescence, accelerated telomere shortening ra
70 with the dissolved PhIP but clearly induced premature senescence activities that may be caused by a
71 activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to li
73 he oncogenic H-RAS-induced DDR and attendant premature senescence, although it does not affect the ob
74 NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular
75 rom Bub3/Rae1 haploinsufficient mice undergo premature senescence and accumulate high levels of p19,
76 specifically required for the development of premature senescence and apoptosis induced by Brca1 defi
78 file of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes,
79 53 mRNA polyadenylation/translation, induces premature senescence and enhances the stability of CPEB
82 TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accu
83 o be reversible, because HES1 prevented both premature senescence and inappropriate differentiation i
84 expression of cathepsin K in pre-OCs induced premature senescence and increased expression of p19, p5
85 hat ECFC dysfunction in PT might result from premature senescence and investigated the underlying mec
86 c treatment is critical for MM cell entry in premature senescence and is required for the preferentia
88 emonstrating depressed heme synthesis showed premature senescence and reduced expression of NMDAzeta1
90 ed by hydrogen peroxide application promotes premature senescence and stimulates the activity of a (-
92 ithin the ras signaling cascade that lead to premature senescence and, thus, have provided new insigh
93 e maintenance including genomic instability, premature senescence, and accelerated telomere erosion.
94 rease in the accumulation of Pi in siliques, premature senescence, and an increase in transcript leve
95 s, including mediation of cell cycle arrest, premature senescence, and apoptosis.p53 also can associa
96 ssion of let-7b down-regulates EZH2, induces premature senescence, and counteracts immortalization of
97 bnormalities, including telomere shortening, premature senescence, and defects in the activation of S
98 ner associated with decreased proliferation, premature senescence, and error-prone recovery from seru
99 vation of Nrf2-dependent signaling, promotes premature senescence, and inhibits their transformed phe
100 p53/p21(Waf1/Cip1) pathway and induction of premature senescence are compromised in caveolin-1 null
101 syndrome, including genomic instability and premature senescence, are consistent with telomere dysfu
104 r, early-passage Foxm1(-)(/)(-) MEFs display premature senescence as evidenced by high expression of
105 h(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-a
107 e ionizing radiation sensitive and displayed premature senescence associated with the accumulation of
108 ivity to sucrose and nitrogen starvation and premature senescence, both during natural senescence of
109 k shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have
110 light growth advantage and were resistant to premature senescence by a mechanism that involved suppre
111 novel regulator of oxidative stress-induced premature senescence by acting as a link between free ra
114 l and doxorubicin, triggered p53-independent premature senescence by invoking oxidative stress-mediat
117 ression of CCN1 (CYR61), a potent inducer of premature senescence, by adeno-associated virus serotype
120 lates p53 mRNA translation and p53-dependent premature senescence, cell proliferation, apoptosis, and
121 (MEF) derived from RAP80(-/-) mice underwent premature senescence compared with wild-type (WT) MEFs,
123 imary mammalian cells, oncogenic ras induces premature senescence, depending on an active MEK-extrace
125 ull primary mouse embryo fibroblasts undergo premature senescence despite normal growth profiles at e
126 ) cells are refractory to H-Ras(V12)-induced premature senescence, despite the activation of a cascad
127 ad, it results in impaired proliferation and premature senescence due to compensatory activation of p
128 Here we show that Atm-/- astrocytes exhibit premature senescence, express constitutively high levels
129 Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radi
132 , mitochondrial membrane depolarization, and premature senescence in a p38MAPK- and p53-dependent man
133 essors, including PTEN and VHL, also induces premature senescence in a p53- or Rb-dependent manner.
136 the impact of accelerated cognitive loss and premature senescence in a vulnerable at-risk population
146 l cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal
147 e results suggest that reoxygenation induces premature senescence in Fancc-/- BM hematopoietic cells
151 PTP1B was necessary and sufficient to induce premature senescence in H-RAS(V12)-expressing IMR90 fibr
153 IF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was a
154 f knocking down its expression, which causes premature senescence in human fibroblasts and epithelial
155 ntioxidant treatment almost fully suppressed premature senescence in Hus1(neo/Delta1) cultures, sugge
156 and inducible overexpression of MKK9 causes premature senescence in leaves and in whole Arabidopsis
157 hibits oncogenic K-Ras (K-Ras(G12V))-induced premature senescence in mouse embryonic fibroblasts and
160 cytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endo
162 p38-mediated up-regulation of caveolin-1 and premature senescence in normal human mammary epithelial
163 ression of caveolin-1 induces stress induced premature senescence in p53 wild-type but not p53 knocko
164 ith cancer, but it also produces paradoxical premature senescence in primary cells by inducing reacti
166 cogenic Ras causes proliferation followed by premature senescence in primary cells, an initial barrie
175 s lacking the autophagy protein Atg7 undergo premature senescence in vitro and accumulate products of
177 androgenetic alopecia (AGA) patients undergo premature senescence in vitro in association with the ex
180 arette smoke extracts promote stress-induced premature senescence in wild type but not caveolin-1 nul
181 stimulation promotes acetylation of p53 and premature senescence in wild-type but not caveolin-1 nul
183 peractivation of PI3K/AKT signaling leads to premature senescence; in the presence of BRAF(V600E), MC
184 C(-/-) embryos exhibit reduced growth rates, premature senescence, increased apoptosis and delayed ce
189 rding to the "free radical theory" of aging, premature senescence induced by oxidative stress contrib
190 f intrinsic senescence but are vulnerable to premature senescence induction by chronic proinflammator
191 he mechanism of chronic inflammation-induced premature senescence involves an abrogation of tmTNF/TNF
192 s initially mitogenic but eventually induces premature senescence involving the p53 and p16(INK4a) tu
193 primary murine cells causes growth defects, premature senescence, IR sensitivity, and inability to s
198 escence and they suggest the hypothesis that premature senescence may represent a tumor suppressor fu
199 embryos displayed severe defects, including premature senescence, mitotic aberrations, sensitivity t
200 y independent short hairpin RNAs resulted in premature senescence of a variety of melanoma cell lines
203 of enforced telomerase expression to rescue premature senescence of cultured cells from individuals
204 turn leads to spontaneous immortalization or premature senescence of Dnmt3b-deficient MEFs via a p53-
205 port to the idea of the pathogenetic role of premature senescence of endothelial cells in diabetic ma
208 gate the molecular mechanisms underlying the premature senescence of HIV-1-specific T cells, we focus
211 evels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and sen
213 ely a consequence of replicative failure and premature senescence of lymphocytes, supporting a role o
222 mblance of pPROM and term membranes suggests premature senescence of the membranes is a mechanistic f
225 itus in vivo and GC exposure in vitro elicit premature senescence of the vascular endothelium, a proc
226 y shRNA (short hairpin RNA) synthesis led to premature senescence of untransformed human fibroblasts,
227 d that activation of the IGF-1R promotes the premature senescence of UVB-irradiated keratinocytes thr
229 iated with a loss in proliferative capacity (premature senescence) of corneal endothelial cells (CECs
230 3) Inactivation of Dnmt3b resulted in either premature senescence or spontaneous immortalization of M
231 amage triggered through oncogene activation (premature senescence) or the loss of telomeres following
232 cited as being responsible for induction of premature senescence, our findings indicate that a broad
233 , HBP1, and RB as important components for a premature-senescence pathway with possible clinical rele
234 Cells overexpressing SUMO-2/3GG showed a premature senescence phenotype as revealed by cellular m
236 nsitivity of the uvh3 mutant to H2O2 and the premature senescence phenotype might result from failure
237 inhibited cell proliferation, and induced a premature senescence phenotype that was also observed in
240 GPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular
242 interfering RNA significantly alleviated the premature senescence phenotypes in SUMO-2/3GG overexpres
244 at down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating
245 These findings suggest that W-CIN triggers premature senescence, presumably to prevent the propagat
246 glycosylation end products in development of premature senescence preventable with a peroxynitrite sc
250 Furthermore, IGF-1R-dependent UVB-induced premature senescence required the phosphorylation of p53
252 Plants further display reduced fertility and premature senescence revealing a crucial function of PSI
253 t dysfunctions, such as increased apoptosis, premature senescence, senescence-like phenotype, or poor
254 the development of both acute stress-induced premature senescence (SIPS) and chronic replicative sene
256 ave undergone damage-mediated stress-induced premature senescence (SIPS) has not been studied in mous
258 s and molecular mechanisms of stress-induced premature senescence (SIPS) of vascular endothelial cell
259 development: (1) stress- or oncogene-induced premature senescence (SIPS/OIS), mediated via the p16-Rb
261 ncluding telomeric abnormalities and undergo premature senescence, suggesting defects in telomere met
262 that X-linked DC patient cells averted from premature senescence support normal levels of rRNA pseud
264 creased rate per population doubling and the premature senescence this loss induces can be bypassed b
266 at lung cancer cells escape oncogene-induced premature senescence through down-regulation of caveolin
267 or Xbp1 splicing promotes growth arrest and premature senescence through hyperactivation of the IRE1
268 fully in low oxygen (3% O2), indicating that premature senescence under conventional culture conditio
269 mechanism, which gives sorghum resistance to premature senescence under soil moisture stress during t
271 oked mitochondrial network fragmentation and premature senescence via a mechanism involving superoxid
272 sely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism.
273 ained intact, the TRF2(DeltaBDeltaM)-induced premature senescence was indistinguishable from replicat
274 found that the extent of DNA damage-induced premature senescence was substantially decreased by over
276 s-of-function and gain-of-function models of premature senescence were used to determine its pathophy
277 (AA/AA)/MMTV-c-neu carcinoma cells underwent premature senescence when cultured under conditions used
278 ry effect of RNPC1 on cell proliferation and premature senescence, whereas combined knockdown of TAp7
279 of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase.
280 eous chromosomal abnormalities and underwent premature senescence, while higher Hus1 expression in Hu
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。