戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ive intramolecular activation pathway of the proenzyme.
2 h increased stability of the secreted 72-kDa proenzyme.
3 r protein, consistent with misfolding of the proenzyme.
4 gest an explanation for the stability of the proenzyme.
5 translated as part of an unusual polyprotein proenzyme.
6 0 and p18 as processed subunits of the CPP32 proenzyme.
7 though it reduced the positive charge of the proenzyme.
8 rms as well as a small fraction of insoluble proenzyme.
9 ch are dependent on the concentration of the proenzyme.
10 nal antiserum raised against the recombinant proenzyme.
11 domain promotes folding and secretion of the proenzyme.
12 an when it was added after activation of the proenzyme.
13 ays a critical role in the activation of the proenzyme.
14 al known virulence factors and secreted as a proenzyme.
15 istinguish the active two-chain uPA from its proenzyme.
16 yme did not accelerate the processing of the proenzyme.
17 on of sorting of newly synthesized lysosomal proenzymes.
18 important for the maturation of several ADAM proenzymes.
19 res proteolytic processing of their inactive proenzymes.
20 proteinases (MMPs) are synthesized as latent proenzymes.
21 of caspase-3 and poly(ADP-ribose) polymerase proenzymes.
22 rified MMP-2 and MMP-9 to show activation of proenzymes.
23  BMP-1 and mTld predominantly as unprocessed proenzymes.
24 Mch4 and Mch5, are derived from single chain proenzymes.
25 he autocatalytic activation of these mutated proenzymes.
26 d more active than procaspase-3, making this proenzyme a remarkably inactive zymogen.
27 e characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic
28 ly, we found that upon binding, the purified proenzyme acquired activity against both the fluorogenic
29 tivators to explore fundamental processes of proenzyme activation and their fate-determining roles in
30 ese studies demonstrate a novel approach for proenzyme activation through binding to fibrils, which m
31 strated that RHBDL2 activity is regulated by proenzyme activation, revealed a role for the conserved
32 these studies presage the discovery of other proenzyme activators to explore fundamental processes of
33 gest general strategies for the discovery of proenzyme activators.
34 ealed a high degree of similarity within the proenzyme active site, reflecting shared chemical constr
35                  The molecular weight of the proenzyme, active enzyme, and enzyme fragments was deter
36    Cathepsin K is synthesized as an inactive proenzyme and activated under conditions of low pH.
37 ion of 17- and 12-kDa fragments of caspase-3 proenzyme and by cleavage of poly(ADP-ribose) polymerase
38  PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains.
39 oenzyme processed much faster than the human proenzyme and did not require putrescine for an optimal
40 as well as the ability to activate the MMP-2 proenzyme and directionally remodel a three-dimensional
41 Carboxypeptidase-U circulates as an inactive proenzyme and is activated by thrombin in a process that
42    Pro-lysyl oxidase is secreted as a 50-kDa proenzyme and is then cleaved to a 30-kDa mature enzyme
43 ichia coli leads to the formation of soluble proenzyme and mature enzyme forms as well as a small fra
44 s using antibodies capable of detecting both proenzyme and processed enzyme forms or the intact or cl
45 ctivity of caspase-12 is confined to its own proenzyme and that autocleavage within the caspase-1 com
46 , caspase-3 is found as a cytosolic inactive proenzyme and that caspase-3 activation is largely confi
47   Here, we show that RHBDL2 is produced as a proenzyme and that the processing of RHBDL2 is required
48 oblot analyses confirmed the presence of the proenzyme and the catalytically active form of MMP-9.
49 en the activation and the uptake rate of the proenzyme and the enzyme of MT1-MMP.
50 8A mutant and have constructed models of the proenzyme and the oxyoxazolidine intermediate.
51              Pro-LOX is secreted as a 50 kDa proenzyme and then undergoes biosynthetic proteolytic pr
52 ss of apoptosis, are synthesized as inactive proenzymes and are activated in a proteolytic cascade af
53  cysteine protease family are synthesized as proenzymes and require proteolytic processing to produce
54 irectly by processing other proteins such as proenzymes and/or other proteins that have an essential
55 n conformation directs proper folding of the proenzyme, and suggested that the cathepsin K active sit
56 at was immunoreactive with the RgpB-specific proenzyme antibodies.
57 lypeptide substrate, including other caspase proenzymes, apoptotic substrates, cytokine precursors, o
58 butanol on the processing of mutant AdoMetDC proenzymes are consistent with a model in which a single
59 e observed that in the absence of PrsA2, the proenzymes are secreted at physiological pH and do not m
60 ibed, all of which are initially produced as proenzymes, are activated by endoproteases, and remove e
61  tissue inhibitor of metalloproteinases-free proenzyme as a substrate for the activator, it is possib
62 s were dependent on the concentration of the proenzyme as well as active collagenase-3.
63 rocathepsin L also induced misfolding of the proenzyme, as indicated by addition of the second oligos
64 or changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy.
65  sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 degrees C, autoactivation kinet
66                                          Its proenzyme autoactivates under acidic conditions in vitro
67 icamycin reduced the molecular mass of TPP I proenzyme by approximately 10 kDa, which indicates that
68                            Activation of the proenzyme by either 4-aminophenylmercuric acetate or chy
69  (MMP-9, gelatinase B) was produced from the proenzyme by limited digestion with trypsin.
70 ecause EDTA prevents activation of exogenous proenzyme by membrane fractions.
71 units, which are derived from the pre-cursor proenzyme by processing at Asp-227, Asp-233, Asp-391, an
72                         Interaction with the proenzyme C3bB was investigated by flowing factor B acro
73  expressed human granzyme A in bacteria as a proenzyme capable of in vitro activation by enterokinase
74  necessary for normal folding of the nascent proenzyme chain.
75 l serine protease inhibitor, PMSF, prevented proenzyme cleavage and permitted its purification free o
76                         The mechanism of PSD proenzyme cleavage has long been unclear.
77 s using ionophore A23187 greatly accelerated proenzyme cleavage, suggesting that a serine protease pr
78 roximately 92-kD, Ca2+ - and Zn2+ -dependent proenzyme cleaved over time to smaller, active forms.
79 o steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same
80 the protein is essential for maintaining the proenzyme conformation needed for autocatalytic processi
81 sembles activation sites in effector caspase proenzymes, consistent with a role for these enzymes as
82  of proteins resulting from the refolding of proenzyme constructs.
83 PB1 are secreted by the pancreas as inactive proenzymes containing a 94-96-amino acid-long propeptide
84                                The truncated proenzyme could be processed by aminophenylmercuric acet
85 redetermined the structure of the wild-type, proenzyme CT from two crystal forms, both of which exhib
86 s in either the potato or the human AdoMetDC proenzyme did not prevent processing but caused a signif
87 o-MMP-9 forms a complex with alpha2(IV), the proenzyme does not bind to triple-helical collagen IV.
88 imary amino acid sequence include a putative proenzyme domain delineated by a consensus autocatalytic
89 f a highly conserved cysteine residue in the proenzyme domain, the so-called "cysteine switch," which
90 D binding site of the X-ray structure of the proenzyme DT-NAD complex.
91 ng INS cells, a substantial fraction of both proenzymes exhibit regulated exocytosis.
92 g experiments that demonstrated that the new proenzyme failed to process to the expected point, the n
93 ent media of recombinant cells as the stable proenzyme form ([Val217]phK2).
94 eas the peripheral cornea contained both the proenzyme form and the active form of gelatinase A.
95  a region within the primary sequence of the proenzyme form of cathepsin L which affects its subcellu
96                                          The proenzyme form of DPAP1 was found to accumulate in the p
97 icated that the central cornea contained the proenzyme form of gelatinase A, whereas the peripheral c
98 ved from dog mastocytomas secrete the 92-kDa proenzyme form of gelatinase B.
99                             We expressed the proenzyme form of GzmB as well and determined that pro-G
100 ealed that levels of the full-length, 85 kDa proenzyme form of MMP-8 increased significantly within 8
101 active form of MMP-9 (actMMP-9), but not the proenzyme form of MMP-9 (proMMP-9), developed BP.
102 ve solved the X-ray crystal structure of the proenzyme form of the catalytic domain of plasminogen, w
103 hat plays a requisite role in processing the proenzyme form of the CTL granule serine proteases (gran
104                            Activation of the proenzyme form of the malarial protease PfSUB-1 involves
105 d in cultured neurons and brain lysates in a proenzyme form that is activated by furin and degraded b
106               The cell expresses MMP2 in its proenzyme form, pro-MMP2, as well as MT1-MMP and TIMP2.
107 ind to the CaM column and was present in the proenzyme form.
108                                     Secreted proenzyme formed non-native, interchain disulfide bridge
109 ysis revealed constitutive expression of the proenzyme forms of caspase-1, -3, and -9 in the human pr
110 cognise the MMP-9 proenzyme or the active or proenzyme forms of matrix metalloproteinase-2 (MMP-2, ge
111 ) mutants have been identified which secrete proenzyme forms of soluble vacuolar hydrolases to the ce
112                      In addition, mature and proenzyme forms of the proteases cathepsin B and catheps
113 thods are included for the activation of the proenzyme forms of these MMPs and the assay can also be
114 se conversion of caspases from their dormant proenzyme forms to active enzymes has a critical role in
115 stromelysin, which remained predominantly in proenzyme forms, as determined by Western analysis of cu
116 ovary, eggs, and embryos were present as the proenzyme forms, suggesting that the functions of these
117 I) exists in circulation as heterotetrameric proenzyme FXIII-A2B2 Effectively all FXIII-A2B2 circulat
118 an increase in the proportion of the anionic proenzyme had no significant effect on the levels of try
119 caspase-3, we demonstrate that the caspase-3 proenzyme has a mitochondrial and cytosolic distribution
120  have found that TGF-beta1 induces the MMP-9 proenzyme; however, this induction does not result from
121 lls as well as maturation of the endocytosed proenzyme in CLN2 lymphoblasts, fibroblasts, and N2a cel
122    We report the expression of the prostasin proenzyme in Escherichia coli as insoluble inclusion bod
123 -3 dramatically stimulates maturation of the proenzyme in vitro.
124  to an active form or remains as unprocessed proenzyme, in a cell type-dependent manner.
125 ediate autoproteolytic maturation of its own proenzyme, in both cis and trans, it was not able to cle
126 anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their
127 not contribute to the activation rate of the proenzyme initiated by collagenase-3 and our results ind
128  (PvlArgDC) formed by the self-cleavage of a proenzyme into a 5-kDa subunit and a 12-kDa subunit that
129 A proteolytic processing then transforms the proenzyme into a catalytically active form.
130 apopain, as was indicated by cleavage of the proenzyme into its proteolytically active fragments.
131 e by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibitio
132 hyladenine, hampered the conversion of TPP I proenzyme into the mature form, suggesting that this pro
133 ecretion of high levels of the precursor GAA proenzyme into the plasma of treated animals.
134 tly, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the G
135                                        TPP I proenzyme is converted in lysosomes into a mature enzyme
136                                     Taspase1 proenzyme is intramolecularly proteolyzed generating an
137                   The secreted lysyl oxidase proenzyme is processed to a propeptide (LOX-PP) and a fu
138 n this report, we demonstrate that the CPP32 proenzyme is proteolytically processed and activated in
139                       In vitro, the chMMP-13 proenzyme is rapidly and efficiently activated through t
140 to normal levels, demonstrating that the UCE proenzyme is stable in this cell type.
141    MT1-MMP exists in various forms: a 63-kDa proenzyme is synthesized as primary translation product,
142 mes to be efficient activators, whereas MASP proenzymes lacked such activity.
143   The propeptide region of the lysyl oxidase proenzyme (LOX-PP) has been shown to inhibit Ras signali
144 mbers of MMP family, MMP-12 is produced as a proenzyme, mainly by macrophages, and undergoes proteoly
145                 Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2
146                                              Proenzyme MASP-1 R448Q readily cleaves synthetic substra
147     The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 A.
148 tic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, c
149  and proenzyme MASP-1 can effectively cleave proenzyme MASP-2.
150 ine proteinases plasmin and thrombin convert proenzyme matrix metalloproteinases (MMPs) into catalyti
151                                              Proenzyme maturation is a general mechanism to control t
152 te is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of pro
153 suggesting that an oncogenic switch for this proenzyme may offer a therapeutic target not only in adv
154 tivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocata
155  Thus, the uptake rate of the latent MT1-MMP proenzyme noticeably exceeded that of the active enzyme.
156 t systems, MPR-mediated sorting of lysosomal proenzymes occurs to a variable extent within the trans-
157                                          The proenzyme of calpain 2 (m-calpain) is a heterodimeric ca
158 HK in the absence of prekallikrein (PK), the proenzyme of plasma kallikrein, on vascular endothelial
159                                          The proenzyme of Sf caspase-1 is 299 amino acids in length a
160 th muscle cells and prothrombin, the pivotal proenzyme of the blood coagulation system, is demonstrat
161 senic trioxide induced the expression of the proenzymes of caspase 2 and caspase 3 and activation of
162 enzymes, stromelysin-1 can also activate the proenzymes of other MMPs, making it an attractive target
163  a posttranslational modification of several proenzymes of the blood coagulation cascade, using eithe
164  cathepsin B was not related to secretion of proenzyme or secretion from mature lysosomes.
165    The antibodies do not recognise the MMP-9 proenzyme or the active or proenzyme forms of matrix met
166  lack of detectable processing of casp-9-CTD proenzyme or the induction of cell death following trans
167 ansiting and functionally mitogenic secreted proenzyme (pCatD) form of cathepsin D (mature CatD), a p
168 racellular serine protease that converts the proenzyme plasminogen into the active protease plasmin,
169 in an intramolecular reaction that cleaves a proenzyme precursor and converts a serine residue into p
170 s the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secr
171 ynthesized and secreted as a 50-kDa inactive proenzyme (Pro-LOX), which is processed by proteolytic c
172 ng quantitatively the activation of the MMP2 proenzyme (pro-MMP2), the ectodomain shedding of MT1-MMP
173           TPP1 is synthesized as an inactive proenzyme (pro-TPP1) that is proteolytically processed i
174 screen (HTS) that stimulates activation of a proenzyme, procaspase-3, to generate mature caspase-3.
175                The wild type potato AdoMetDC proenzyme processed much faster than the human proenzyme
176 ine space of unactivated eggs, apparently as proenzymes processed away from the original polyprotein.
177 d 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity.
178 al mechanisms and/or after secretion through proenzyme processing and interactions with metalloprotei
179 rg at position 13 is a major determinant for proenzyme processing in the parasite enzyme.
180                In the human enzyme, both the proenzyme processing reaction and enzyme activity are st
181  involved in substrate binding, catalysis or proenzyme processing that were identified in the human a
182                  The site of potato AdoMetDC proenzyme processing was found to be Ser73 in the conser
183 the putrescine stimulation of human AdoMetDC proenzyme processing was identified in the present studi
184  the putrescine activation of human AdoMetDC proenzyme processing.
185 old increase in lysyl oxidase expression and proenzyme production.
186  catalytic requirements for neutrophil MMP-9 proenzyme (proMMP-9) to induce angiogenesis were investi
187 e, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vi
188 rostatic ducts as an inactive 244-amino acid proenzyme (proPSA) that is activated by cleavage of seve
189 ant H243A S-adenosylmethionine decarboxylase proenzyme provides a useful model system to examine the
190 es, including self-cleaved forms, during the proenzyme purification process.
191     A single point mutation in the lysosomal proenzyme receptor-inhibiting sequence near the N termin
192 e to suppress k(cat)/K(M) by 250-fold in the proenzyme relative to wild-type barnase.
193  elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation.
194 en the large and small subunits of the CPP32 proenzyme, resulting in removal of the prodomain via an
195                 In addition, cleavage of the proenzyme results in the formation of a threonine-threon
196 tructure of the Thermatoga maritima AdoMetDC proenzyme reveals a dimeric protein fold that is remarka
197                       Analysis of the latent proenzyme's interface between the shielding C-terminal d
198      The resultant N terminus of the cleaved proenzyme serves as a nucleophile in amide bond hydrolys
199 normal male Sprague-Dawley rats, much of the proenzyme sorting appears to occur earlier, significantl
200 the C-terminal prosequence suggests that the proenzyme state is dependent on the presence of a basic
201                                          The proenzyme structure reveals suboptimal catalytic triad g
202                                   A purified proenzyme that accumulated in the His-72 mutant was show
203 t RIP2 protein is synthesized as an inactive proenzyme that can be processed in the caterpillar gut.
204 decarboxylase (AdoMetDC) is synthesized as a proenzyme that cleaves itself in a putrescine-stimulated
205  show that UCE is synthesized as an inactive proenzyme that is activated by the endoprotease furin, w
206 monstrated that EmpA is secreted as a 46-kDa proenzyme that is activated extracellularly by the remov
207 2 gene product is synthesized as an inactive proenzyme that is autocatalytically converted to an acti
208 ombin-activatable fibrinolysis inhibitor), a proenzyme that is proteolytically activated by thrombin
209 s secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the matur
210 of the CED-3/ICE family, is synthesized as a proenzyme that is subsequently processed into an active
211 methionine decarboxylase is synthesized as a proenzyme that undergoes an autocatalytic cleavage react
212    This protein is translated as an inactive proenzyme that undergoes autoprocessing to become an act
213 mepsins are synthesized as integral membrane proenzymes that are activated by cleavage from the membr
214 yme (ICE), family members are synthesized as proenzymes that are proteolytically processed to form ac
215                                    Lysosomal proenzymes that fail to be sorted at both sites remain a
216 Caspases are normally present in the cell as proenzymes that require limited proteolysis for activati
217              In the structure of the MT1-MMP proenzyme, the R(89)-R-P-R-C(93) site, however, is inacc
218 first small molecules that directly activate proenzymes, the apoptotic procaspases-3 and -6.
219 d 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2)
220 ile (T282C) allowed determination of a 1.6-A proenzyme ThnT crystal structure, which revealed a level
221 smid increased the maturation of the soluble proenzyme three- to fourfold without influencing the con
222 is processed from a 75-kDa, Zn(2+)-activated proenzyme to a mature 65 kDa, Zn(2+)-independent L-SMase
223 sion (first detected after 6 h) of the CPP32 proenzyme to active caspase-3, a cysteine protease that
224 oportion of factor VII is converted from its proenzyme to active serine protease for several hours po
225 wth cones, and proteolytic conversion of the proenzyme to mature enzyme mainly occurred after the sec
226 sed proteolytic processing of the 45-kDa LOX proenzyme to the 30-kDa active form, with a correspondin
227 e to AEBSF participates in processing of the proenzyme to the mature, active form in vivo.
228 and switch effective autoactivation of TPP I proenzyme toward less acidic pH values (up to pH 6.0).
229              The pancreas secretes digestive proenzymes typically in their monomeric form.
230  formed in a concerted reaction when the PSD proenzyme undergoes an endoproteolytic cleavage into a l
231      Cathepsin K was expressed as a secreted proenzyme using baculovirus-infected Sf21 insect cells.
232         When (202)KR were mutated to AA, the proenzyme was also activated, suggesting that (197)RPRR
233                      Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from appro
234 Western blotting demonstrated that the CPP32 proenzyme was expressed in granule neurons before induct
235                               Also, the RgpB proenzyme was identified in this fraction by mass spectr
236                                   The 60-kDa proenzyme was kinetically competent to form the mature 4
237     Autolytic cleavage within the caspase-12 proenzyme was mapped to a single site at the large-small
238           In addition, the maturation of the proenzyme was not affected by the presence of glycerol.
239 uman protein and 25 residues from the potato proenzyme were compatible with processing.
240 tutive synthesis and activation of the MMP-2 proenzyme were modulated by stable transfections of tumo
241         Both Cwp84 and Cwp13 are produced as proenzymes which are processed by cleavage to produce ma
242 dine and spermine, is first synthesized as a proenzyme, which is cleaved posttranslationally to form
243  and differentiation and is synthesized as a proenzyme, which undergoes autocatalytic cleavage to gen
244 usceptible to rapid decay by DAF, unlike the proenzyme, which was unaffected.
245 caspases are initially expressed as inactive proenzymes, which undergo proteolytic cleavage to become
246                PC-PLC is made as an inactive proenzyme whose activation requires cleavage of an N-ter
247                          PC-PLC is made as a proenzyme whose maturation is mediated by a metalloprote
248        Digestion of immunoprecipitated TPP I proenzyme with both N-glycosidase F and endoglycosidase
249  metalloproteinase present mostly as a 66-kD proenzyme with lower levels of a 62-kD active form.
250                                 Finally, the proenzyme with the active site mutated (S475L) was not p
251 cess that involves a trimer formation of the proenzyme with TIMP2 and MT1-MMP, is suppressed at high
252 ly not due to altered protein folding as the proenzyme within A23187-treated cells remained capable o

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top