コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ions generated substantial quantities of the prostanoid.
2 aglandin D2 and allows rapid access to other prostanoids.
3 iprocal increase in basal excretion of other prostanoids.
4 ivity and association with the ER but not on prostanoids.
5 receiving endothelin-receptor antagonists or prostanoids.
6 n mediator prostaglandin E2 (PGE2) and other prostanoids.
7 (1) and CysLT(2)) and the PGE(2) receptors E-prostanoid 1 to 4 (EP(1)-EP(4)) in bronchial biopsy spec
10 ivo function of PGE2 signaling through its E-prostanoid 2 (EP2) receptor in murine innate immune resp
13 AMP, generated mainly upon ligation of the E prostanoid 2 receptor and acting via protein kinase A (P
14 n was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP.
15 e AM overproduction of PGE(2) and elevated E prostanoid 2 receptor expression, AM phagocytosis, killi
16 -stimulated liver NKT cells in a PGE2 E-type prostanoid 2/E-type prostanoid 4 receptor-mediated manne
17 receptors, the prostaglandin E(2) (PGE(2)) E-prostanoid 3 (EP3) receptor binds agonist with high affi
21 2), autocrine activation of the macrophage E-prostanoid 4 (EP4) receptor, and subsequent triggering o
31 noid synthase for the synthesis of bioactive prostanoid and (b) the interaction with its receptors th
35 phages revealed suppression of COX-2-derived prostanoids and augmented 5-lipoxygenase product formati
37 OX) -1 and -2 metabolize arachidonic acid to prostanoids and reactive oxygen species, major players i
38 crophages, miR-466l overexpression increased prostanoids and SPMs (e.g., resolvin D1 [RvD1] and RvD5)
43 ralization of PGE2 in AEC-CM implicated this prostanoid as the major AEC-derived factor mediating enh
46 a patient hypothesized to have an inherited prostanoid biosynthesis deficiency due to his multiple,
47 of the effect of mPGES-1 genetic deletion on prostanoid biosynthesis in fibroblast lineage cells and
48 genase (COX)-2, the inducible key enzyme for prostanoid biosynthesis, is overexpressed in most colore
51 ecreased cell cycle-regulating cyclin D1 and prostanoid biosynthetic enzyme cyclooxygenase-2 in micro
52 Cyclooxygenase (COX), a key enzyme in the prostanoid biosynthetic pathway, has received considerab
55 s, we only found a modest down regulation in prostanoid concentrations, whereas it led to significant
59 lts show that, like viruses, bacteria induce prostanoid-dependent beta2 -AR desensitization on ASM ce
61 ition, we also examined the effects of other prostanoids derived from COX-2 oxygenation of eCBs on mI
62 s, but the role of its two receptors, D-type prostanoid (DP) and, in particular, chemoattractant rece
64 ult of the reduced COX-derived production of prostanoids (e.g., prostacyclin) rather than the decreas
65 is generated through enzymatic metabolism of prostanoid endoperoxides by specific PGE synthases (PGES
67 Here we report in vitro specificities of prostanoid enzymes and receptors toward EPA-derived, 3-s
68 (PGH2) is also a command substrate for other prostanoid enzymes that produce distinct eicosanoids, su
69 re in the monkey, the prototypical selective prostanoid EP(4) receptor agonist (3,7-dithia PGE(1)) wa
70 ists to S1P(1) and S1P(2) receptors, and the prostanoid EP(4) receptor agonist 3,7-dithia PGE(1).
72 yl PGE(2), or of selective agonists of the E-prostanoid (EP) 1, EP2, and EP3 receptors, respectively,
74 erived PGE(2) signals via up-regulation of E prostanoid (EP) 2 and down-regulation of EP3 receptors t
79 , we investigated the function of the PGE2 E-prostanoid (EP) 4 receptor in the CNS innate immune resp
81 the activation of the G(s) protein-coupled E prostanoid (EP) receptors EP2 and EP4 (macrophages) or E
84 nd evaluate the significance of individual E prostanoid (EP) receptors in mediating the fibroprolifer
90 onchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-20
91 ng ex vivo is controlled heterologously by E prostanoid (EP)(1) and EP(2) receptor-dependent signalin
93 d small-interfering RNA approaches, a PGE2/E prostanoid (EP)2/adenylate cyclase pathway was implicate
95 cytokine release from human macrophages, the prostanoid EP1 receptor played a permissive role in supp
97 ted the role of PGE(2), which binds to the E-prostanoid family of G protein-coupled receptors through
98 enes differentially induced by the synthetic prostanoid fluprostenol and IL-1 in cementoblastic cells
99 owever, the contribution of these enzymes in prostanoid formation varies depending on the stimuli and
103 and the prostaglandin F2alpha (PGF2alpha) F prostanoid (FP) receptors are both potent regulators of
105 remain unclear, though stimulated release of prostanoids from neighboring vascular cells has been imp
106 egulation of COX-2 induction and its role in prostanoid generation after a pro-inflammatory challenge
112 se of corresponding arachidonic acid-derived prostanoids, implying that these effects are not mediate
113 rostaglandin (PG)E2, a major proinflammatory prostanoid in the cardiovascular system, is a potent sti
114 OX-1 activity within the body as it produces prostanoids in an explosive burst that does not reflect
117 E(2) (PGE(2)) is one of the most ubiquitous prostanoids in the kidney, where it may influence a wide
118 These sex differences in the role of these prostanoids in the PVAT-induced contraction can be expla
119 etermined the role of cyclooxygenase-derived prostanoids in this contractile response and determined
120 ess this question, we measured production of prostanoids, including 6-keto-PGF1alpha, by isolated ves
121 indomethacin pellets, suggesting a role for prostanoids, including prostaglandin E(2), in differenti
122 ictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-p
123 ed families of natural products, such as the prostanoids, indole alkaloids, and macrolide antibiotics
125 and synthesis of a new series of potent non-prostanoid IP receptor agonists that showed oral efficac
127 s, PGE(2) and PGD(2), are synthesized by the prostanoid isomerases, PGE synthases (PGES) and PGD synt
128 ion profile and the individual role of these prostanoid isomerases-mediated inflammation in macrophag
130 ncubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) foll
133 nd to LPS by a COX-2-dependent production of prostanoids, mainly vasoactive PGE(2), and suggest that
134 est a novel mechanism through which reactive prostanoids may activate nociceptive neurons independent
135 olypharmacological approach for treating the prostanoid-mediated component of inflammatory diseases w
137 lung injury are attenuated by inhibiting the prostanoid mediators cyclo-oxygenase-2 and 5-lipoxygenas
138 The HSD augmented in all strains urinary prostanoid metabolite excretion, with the exception of t
143 f treatment with intravenous or subcutaneous prostanoids, or worsening of pulmonary arterial hyperten
148 f the pro-inflammatory cytokine IL-8 and the prostanoid PGE(2) are regulated by NF-kappaB, this could
150 Ra triggers production of high levels of the prostanoid PGE(2), which promotes protection against mit
153 y reduced prostaglandin E2 (PGE(2)), a major prostanoid produced downstream of COX-2 and an important
156 tly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cell
157 PGES-1 gene deletion results in diversion of prostanoid production from PGE2 to 6-keto PGF1alpha (the
159 effects of histamine on COX-2 expression and prostanoid production were mediated through H(1) recepto
160 antiinflammatory agents (NSAIDs) that reduce prostanoid production, for example, selective inhibitors
165 the enzyme cyclooxygenase-2 (COX-2) and its prostanoid products, prostaglandin E2 (PGE2 ) in particu
167 ooxygenase-2 (COX-2) produces novel types of prostanoids: prostaglandin glycerol esters (PG-Gs) and p
168 ted moderate selectivity to EP2 over the DP1 prostanoid receptor ( approximately 10-fold) and low aqu
169 it functions through two major receptors, D prostanoid receptor (DP) and chemoattractant receptor-li
170 inflammatory responses by interaction with D prostanoid receptor (DP) and chemoattractant receptor-li
172 re mediated by the combined action of E-type prostanoid receptor (EP) 2 and EP4 receptors, which were
173 einyl leukotriene receptor 1 (CysLT1R) and E-prostanoid receptor (EP) 3, enhanced extracellular signa
174 ty of Ishikawa cells stably expressing the F-prostanoid receptor (FPS) to adhere to vitronectin.
176 ion of the vasoconstricting thromboxane A(2) prostanoid receptor (TP), a mechanism supported by MaxiK
179 his is mediated by a cyclooxygenase-PGE(2)-E prostanoid receptor 2 (EP2)-adenylyl cyclase-cyclic AMP
182 GE2, which induces IL-1beta production via E prostanoid receptor 2/4-cAMP-PKA-NFkappaB-dependent mech
184 ptors for prostaglandin E2 (PGE2) and that E-prostanoid receptor agonists, including PGE2, induce the
185 ooxygenase-2 inhibition or deletion of its I prostanoid receptor also predisposes to accelerated athe
186 xpression of the G(alphas) protein-coupled I prostanoid receptor and greater cAMP generation in PMs t
194 Adult mice carrying a null mutation of the prostanoid receptor EP3R (EP3R(-/-) mice) exhibit increa
195 l assays with respect to most members of the prostanoid receptor family and a more modest 30- to 50-f
199 ons demonstrate the first working example of prostanoid receptor polypharmacology for potentially saf
200 n, and we now suggest how targeting specific prostanoid receptor signaling pathways could be exploite
201 broblasts; (ii) PGE(2) activation of the EP3 prostanoid receptor stimulates the activation of JNK.
202 dating the role of prostaglandin E2 (PGE2) E-prostanoid receptor subtype 1 (EP1) in regulating blood
206 ion of PGI2, we generated mice lacking the I prostanoid receptor together with mPges-1 on a hyperlipi
207 Whereas compounds selective for a single prostanoid receptor typically exhibited modest but stati
208 id receptors, a specific activator of the FP prostanoid receptor, and direct activators/inhibitors of
209 landin E activating the EP3 isoform of the E prostanoid receptor, appears to be up-regulated in insul
213 tion or suppression of downstream molecules--prostanoid receptor-1 or tumour necrosis factor-alpha--m
214 treated with inhibitors of cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-alpha; a
215 ssion of cyclooxygenase-2, prostaglandin E2, prostanoid receptor-1, tumour necrosis factor-alpha and
216 promising new outlook for the examination of prostanoid receptor-G-protein interactions in greater de
218 but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chem
220 , we studied mice with selective deletion of prostanoid receptors and generated conditionally immorta
221 xygenase-2, its derivative prostaglandin E2, prostanoid receptors and pro-inflammatory cytokines were
222 roblasts (18Co) through Gs protein-coupled E-prostanoid receptors and the cyclic AMP/protein kinase A
224 ibitory approach to perform the screening of prostanoid receptors as potential candidates that mediat
225 anner, 3) exhibits high selectivity over all prostanoid receptors as well as 157 other receptors and
228 fferent functions and cell distribution of E prostanoid receptors explain the difficulty encountered
229 In vivo studies validating multitargeting of prostanoid receptors for achieving superior anti-inflamm
230 obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for
232 receptor pathways, beta(2)-adrenoceptors and prostanoid receptors that are expressed endogenously in
233 product of arachidonic acid that activates D prostanoid receptors to modulate vascular, platelet, and
235 a), specific activators/inhibitors of the EP prostanoid receptors, a specific activator of the FP pro
237 It is known that PGE2 signals via the E prostanoid receptors, EP1-4, but the role that each rece
238 isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained signifi
239 se findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and
245 These results reveal a mechanism by which prostanoids regulate cell movement, which may be relevan
247 a predetermined stereogenic center into the prostanoid ring, resulting in the synthesis of 15R-methy
248 to exogenous mechanical stimuli secondary to prostanoid signaling and Akt/mTOR (mammalian target of r
249 xide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyp
250 pholipid EPA/AA ratios in cells would dampen prostanoid signaling with the largest effects being on P
251 muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction.
256 c acid (HETE) and 15(S)-HETE, in addition to prostanoids such as thromboxane A2 Releasates from activ
257 pendent production of COX-derived endogenous prostanoids, such as Delta(12)-PGJ2 and 15d-PGJ2, may re
258 Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes
259 catalyzed sequentially by cyclooxygenase and prostanoid synthase for the synthesis of bioactive prost
261 rent diets will likely affect both base-line prostanoid synthesis and responses to COX inhibitors.
263 ge conditions (interleukin-1) that activated prostanoid synthesis only in PVCs, while enhancing these
264 ammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid rece
266 genase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, has been implicated in the neuroto
269 rs, we aimed to establish whether endogenous prostanoids synthesised by cyclooxygenase (COX) affect r
270 ght the potential pathogenic contribution of prostanoids synthesized via COX-1, in particular PGI2, t
273 lly constitutively expressed and synthesizes prostanoids that mediate homeostatic functions; and (ii)
274 es of injury or inflammation and synthesizes prostanoids that mediate inflammation, pain and fever.
275 acid metabolism mediating the production of prostanoids that, among other actions, have strong vasoa
276 predictive of outcome; patients initiated on prostanoid therapy showed the greatest improvement in RV
282 prostanoids, 8 transitioned from intravenous prostanoids to inhaled iloprost, which continued during
284 d receptor 1 (DP(1)) or the thromboxane-like prostanoid (TP) receptor did not play a role in mediatin
289 in vitro in a PGE2-dependent manner via the prostanoid type E receptor-2 (EP2), effects not seen wit
290 yclooxygenase (COX)-mediated biosynthesis of prostanoids, various widely used nonsteroidal anti-infla
292 terase type-5 inhibitors and oral or inhaled prostanoids was permitted for WHO functional class III/I
293 f the receptor for PGI(2), but not for other prostanoids, was depressed by HSD in WT and even more so
295 ses, mean arterial pressure, and lung tissue prostanoids were measured in separate groups of C57Bl/6
297 sma aldosterone level, and urinary and heart prostanoids were similar in apoE(-/-) and GV DKO mice af
298 ealed a nexus between metalloproteinases and prostanoids whereby MMP-1 and MMP-3, commonly found in i
299 to the production of TNFalpha, IL-1beta, and prostanoids, which are likely responsible for the mainte
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。