戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (left1)

通し番号をクリックするとPubMedの該当ページを表示します
1 e focal adhesion protein alpha-parvin (alpha-pv) is essential for vascular development.
2                      In the absence of alpha-pv, blood vessels display impaired VE-cadherin junction
3 Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-l
4 eudomonas syringae pathovar (pv.) tomato and pv. maculicola were made by insertion of the luxCDABE op
5 gens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcripti
6 nome of citrus canker pathogen X. axonopodis pv. citri 306.
7 odis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides val
8 . axonopodis pv. citrumelo and X. axonopodis pv. citri.
9  on citrus compared to that of X. axonopodis pv. citri.
10 y genes, which were present in X. axonopodis pv. citri.
11 t range as compared to that of X. axonopodis pv. citri.
12 pv. citrumelo while present in X. axonopodis pv. citri.
13                                X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, s
14 ith the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri.
15  a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size.
16 identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host
17               We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X.
18 he complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X.
19 pAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri.
20  and B groups were placed into X. axonopodis pv. vesicatoria and X. vesicatoria, respectively.
21 anker (CBC) caused by Xanthomonas axonopodis pv. citri (Xac) was first documented in India and Java i
22  The protein Clp from Xanthomonas axonopodis pv. citri regulates pathogenesis and is a member of the
23 omonas aeruginosa and Xanthomonas axonopodis pv. citri.
24                       Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacter
25 ght (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial dis
26 aused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam).
27 Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the causal agent of bacteria
28 terial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examined the effect of the los
29 v library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an
30 f N-glycopeptide processing by X. campestris pv. campestris.
31 tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host
32 of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mech
33 to B. cinerea infection and to X. campestris pv. vesicatoria, correlated with cuticle permeability an
34 rols the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants.
35                    In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (r
36                       Xanthomonas campestris pv. campestris can express AvrXa21 activity if raxST, en
37 family encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI:21233491).
38                       Xanthomonas campestris pv. campestris, the causal agent of black rot disease of
39 e-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola stra
40 confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain t
41 he bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (
42 g bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv).
43 he non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv).
44                       Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of tomat
45 ecreted effector from Xanthomonas campestris pv. vesicatoria, is a desumoylating enzyme with strict s
46 nslocator, HrpF, from Xanthomonas campestris pv. vesicatoria.
47 ic bacterial pathogen Xanthomonas campestris pv. vesicatoria.
48            Pseudomonas aeruginosa PAO1 K648 (pvd-, pch-) exhibited greater promiscuity than that of E
49 pic mechanism of thermal transport in MgSiO3 pv, and provide reference data for understanding heat co
50                               Although X. o. pv. oryzicola does not cause disease on maize, we identi
51 esults support the hypothesis that X. oryzae pv. oryzae commandeers the regulation of otherwise devel
52 ive resistance to PthXo2-dependent X. oryzae pv. oryzae due to promoter variations of OsSWEET13 in ja
53 esults corroborate a model whereby X. oryzae pv. oryzae enhances the release of sucrose from host cel
54     These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the p
55                                    X. oryzae pv. oryzae requires a regulatory two-component system (T
56                                    X. oryzae pv. oryzae therefore modulates the expression of multipl
57 ain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the
58 that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG.
59 ependent disease susceptibility to X. oryzae pv. oryzae.
60 WEET13 induction by 42 isolates of X. oryzae pv. oryzae.
61 estris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the m
62 he strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistanc
63 m and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous
64 hway of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) in a semi-isolated environment represen
65   The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX,
66 ce to a broad spectrum of Xanthomonas oryzae pv. oryzae (Xoo) races that cause bacterial blight disea
67 bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27.
68 livered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two p
69 ceptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf bli
70 n by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in ric
71 ed with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo).
72  strains of the bacterium Xanthomonas oryzae pv. oryzae (Xoo).
73 onfers resistance against Xanthomonas oryzae pv. oryzae (Xoo).
74 blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo).
75 o the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo).
76 acterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo).
77 acterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo).
78  (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo).
79                           Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa
80 xtraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated f
81 ing disease by strains of Xanthomonas oryzae pv. oryzae is dependent on major transcription activatio
82  the sulfated form of the Xanthomonas oryzae pv. oryzae secreted protein Ax21.
83 levated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99(A) and depends on the type III e
84                           Xanthomonas oryzae pv. oryzae strain PXO99(A) induces the expression of the
85 21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the AvrXa21 elicitor.
86 21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secrete
87 ative bacterial pathogen, Xanthomonas oryzae pv. oryzae upon recognition of a small protein, Ax21, th
88 ae) and bacterial blight (Xanthomonas oryzae pv. oryzae).
89  Gram-negative bacterium, Xanthomonas oryzae pv. oryzae, is a tyrosine sulfotransferase.
90 the gamma-proteobacterium Xanthomonas oryzae pv. oryzae, which utilizes a group of type III TAL (tran
91 nd rapid evolution within Xanthomonas oryzae pv. oryzae.
92 er infection of bacterium Xanthomonas oryzae pv. oryzae.
93  Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regula
94 rial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc) contains a homologous operon.
95 e rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a b
96 rial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc).
97                           Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak of rice.
98  native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE
99 cognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease.
100 ive flg22(Xo) peptides of Xanthomonas oryzae pvs. oryzae (Xoo) and oryzicola (Xoc).
101  rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcrip
102 ana pathogens Pseudomonas syringae pathovar (pv.) tomato and pv. maculicola were made by insertion of
103 mal conductivity kappa of MgSiO3 perovskite (pv) by ab initio lattice dynamics calculations combined
104 their control proteins HrpV and HrpG from Ps pv. tomato DC3000 in vitro establish that HrpRS forms a
105 eath in N. benthamiana inoculated with P. s. pv. tabaci was also reduced.
106 ene production and increases growth of P. s. pv. tomato and severity of speck disease on susceptible
107                            Strikingly, P. s. pv. tomato DC3000, an isolate fully virulent on Arabidop
108 D2 as a type III secreted protein from P. s. pv. tomato DC3000.
109 st response to the large collection of P. s. pv. tomato strains that express different combinations o
110  the host Pto kinase, which recognizes P. s. pv. tomato strains that express the effector AvrPto.
111 Pto and for elicitation of immunity to P. s. pv. tomato.
112 ing Pto/Prf-dependent immunity against P. s. pv. tomato.
113 n both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseu
114   Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced
115 e olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDE
116 fforts allowed overproduction of P. syringae pv. glycinea PG4180 CmaA in P. syringae pv. syringae FF5
117 sistance against virulent Pst or P. syringae pv. maculicola (Psm) pathogens.
118 phaseolicola, and pPMA4326A from P. syringae pv. maculicola encoded a type IVA T4SS (VirB-VirD4 conju
119 owth of the universally virulent P. syringae pv. maculicola ES4326 among more than 100 Arabidopsis ec
120 udomonas syringae pv. tomato and P. syringae pv. maculicola.
121 udomonas syringae pv. tomato and P. syringae pv. maculicola.
122  P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and patho
123 report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open
124 syringae pv. tomato, and 19 from P. syringae pv. phaseolicola race 6.
125 ngae pv. syringae, pPh1448B from P. syringae pv. phaseolicola, and pPMA4326A from P. syringae pv. mac
126  delivered by the RW60 strain of P. syringae pv. phaseolicola.
127 e of the sequenced bean pathogen P. syringae pv. syringae (Psy) B728a using bioinformatics.
128 P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A r
129 g a plasmid-encoded T3SS and the P. syringae pv. syringae 61 effector gene hopA1 increased in planta
130 ied in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11.
131 usceptible to non-host pathogens P. syringae pv. syringae and P. syringae pv. tabaci.
132   Here we characterize a gene in P. syringae pv. syringae B728a and P. syringae pv. tomato DC3000, te
133 tor gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex.
134 e supporting the hypothesis that P. syringae pv. syringae B728a produces both of these siderophores.
135 losely related pathogenic strain P. syringae pv. syringae B728a, but none were detected.
136                      The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syring
137 only siderophores synthesized by P. syringae pv. syringae B728a.
138 ngae pv. glycinea PG4180 CmaA in P. syringae pv. syringae FF5 as a FLAG-tagged protein and overproduc
139 welve PFPs along with pPSR1 from P. syringae pv. syringae, pPh1448B from P. syringae pv. phaseolicola
140 in (MBP) in Escherichia coli and P. syringae pv. syringae.
141 ana did not confer resistance to P. syringae pv. tabaci (Pta) expressing avrPto or avrPtoB, but recog
142 lenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively.
143 fect was suppressed by wild-type P. syringae pv. tabaci and P. fluorescens heterologously expressing
144 esistant to a virulent strain of P. syringae pv. tabaci and showed an accelerated hypersensitive resp
145 cens, a TTSS-deficient mutant of P. syringae pv. tabaci, or flg22 (a flagellin-derived peptide elicit
146 ens P. syringae pv. syringae and P. syringae pv. tabaci.
147 AD(P) leaking into the ECC after P. syringae pv. tobacco DC3000/avrRpt2 infection is sufficient for i
148 y related to the tomato pathogen P. syringae pv. tomato (Pto), including strains isolated from snowpa
149 ficantly when co-inoculated with P. syringae pv. tomato but not when co-inoculated with a type III se
150 ed protein and overproduction of P. syringae pv. tomato CmaA in Escherichia coli as a His-tagged prot
151 ned and is compared with that of P. syringae pv. tomato DC3000 (Pst DC3000).
152  not prevent the HR activated by P. syringae pv. tomato DC3000 + avrB, avrRpm1, avrRps4 or avrRpt2, b
153  and related T3SS substrates for P. syringae pv. tomato DC3000 and three other sequenced strains.
154 728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene compo
155                              The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis
156 d to test the ability of several P. syringae pv. tomato DC3000 effectors for their ability to suppres
157          The availability of the P. syringae pv. tomato DC3000 genome sequence has resulted in the id
158 ated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase
159                              The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to s
160                                  P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS s
161  variance of basal resistance to P. syringae pv. tomato DC3000 in the Col-0 x Fl-1 F(2) population.
162                      Analyses of P. syringae pv. tomato DC3000 mutants indicated that both type III s
163 the loss of swarming motility of P. syringae pv. tomato DC3000 on medium containing a low percentage
164 slocated into plant cells by the P. syringae pv. tomato DC3000 TTSS.
165 repertoire of the model pathogen P. syringae pv. tomato DC3000 were deleted to produce polymutant DC3
166 ogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservat
167  syringae pv. syringae B728a and P. syringae pv. tomato DC3000, termed phcA, that has homology to a f
168 e when challenge inoculated with P. syringae pv. tomato DC3000.
169  frames (ORFs) within the EEL of P. syringae pv. tomato DC3000.
170 1-1, hopS1, and hopS2 operons in P. syringae pv. tomato DC3000; these operons encode three homologous
171  with pDC3000A and pDC3000B from P. syringae pv. tomato encoded a type IVB T4SS (tra system).
172 a virulence protein by promoting P. syringae pv. tomato growth and enhancing symptoms associated with
173                              The P. syringae pv. tomato OpuC transporter had a high affinity for glyc
174                              The P. syringae pv. tomato OpuC transporter was more closely related to
175 ells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thal
176 IAA levels during infection with P. syringae pv. tomato strain DC3000 (PstDC3000).
177 ine family transporter (BCCT) in P. syringae pv. tomato strain DC3000 that mediates the transport of
178     In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacteria
179 hat were susceptible to virulent P. syringae pv. tomato strain DC3000, but resistant to DC3000 expres
180 efined 29 type III proteins from P. syringae pv. tomato, and 19 from P. syringae pv. phaseolicola rac
181 itica and the bacterial pathogen P. syringae pv. tomato.
182     The introduction of Pseudomonas syringae pv. actinidiae (Psa) severely damaged the New Zealand ki
183                     The Pseudomonas syringae pv. glycinea effector protein AvrB induces resistance re
184  the bacterial pathogen Pseudomonas syringae pv. maculicola (Pma) ES4326 and activation of SA synthes
185 nced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasit
186 se against the pathogen Pseudomonas syringae pv. maculicola ES4326 (Pma ES4326).
187  the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326.
188                         Pseudomonas syringae pv. maculicola strain M6 (Psm M6) carries the avrRpm1 ge
189  the bacterial pathogen Pseudomonas syringae pv. maculicola.
190 real bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesio
191  from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stre
192  subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121.
193  with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance m
194 opsis is a non-host for Pseudomonas syringae pv. phaseolicola NPS3121 (Pph), a bacterial pathogen of
195 rming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 is a member of the mononuclear nonh
196  non-host resistance to Pseudomonas syringae pv. phaseolicola strain 3121 (Psp), suggesting that resi
197 with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genom
198                         Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathog
199                       A Pseudomonas syringae pv. pisi effector protein, AvrRPS4, triggers RPS4-depend
200 n effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant
201 ete hrp/hrc region from Pseudomonas syringae pv. syringae 61 into the genome of the soil bacterium Ps
202 ated as a phytotoxin by Pseudomonas syringae pv. syringae B301D contains a 4-Cl-L-Thr-9 moiety where
203 ete genomic sequence of Pseudomonas syringae pv. syringae B728a (Pss B728a) has been determined and i
204 p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated.
205                         Pseudomonas syringae pv. syringae B728a is a resident on leaves of common bea
206                         Pseudomonas syringae pv. syringae B728a is known to produce the siderophore p
207 its of syringafactin by Pseudomonas syringae pv. syringae B728a on leaves.
208  transcript profiles of Pseudomonas syringae pv. syringae B728a support a model in which leaf surface
209  surfactant produced by Pseudomonas syringae pv. syringae B728a that was not detected by traditional
210 nas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a.
211                         Pseudomonas syringae pv. syringae cell densities fluctuate regularly during h
212 in and syringopeptin by Pseudomonas syringae pv. syringae is controlled by the regulatory genes salA
213 (syp) genomic island of Pseudomonas syringae pv. syringae.
214 yrB2 from the bacterium Pseudomonas syringae pv. syringae.
215 lowing inoculation with Pseudomonas syringae pv. tabaci carrying avrPto, aconitase-silenced N. bentha
216 obacco mosaic virus and Pseudomonas syringae pv. tabaci.
217 mplement recognition of Pseudomonas syringae pv. tomato (Pst) bacteria expressing either avrPto or av
218 ility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF th
219  the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, including increased disease res
220 nit of the Hrp pilus in Pseudomonas syringae pv. tomato (Pst) DC3000.
221 phic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000.
222 lent bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000/avrRpt2, and renders plants susc
223  the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon
224 retion system (TTSS) of Pseudomonas syringae pv. tomato (Pst) injects into the plant cell effector pr
225 PS2, RPM1, and RPS5, to Pseudomonas syringae pv. tomato (Pst) strain DC3000 containing the cognate ef
226  The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects tomato and Arabid
227 n effector protein from Pseudomonas syringae pv. tomato (Pst), behaves as an avirulence factor that a
228  the bacterial pathogen Pseudomonas syringae pv. tomato (Pst).
229 n of bacterial pathogen Pseudomonas syringae pv. tomato (Pst).
230 ermine immunity against Pseudomonas syringae pv. tomato (Pst).
231 lent bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000.
232                       * Pseudomonas syringae pv. tomato (Pto) T1 is pathogenic in tomato (Solanum lyc
233 th a virulent strain of Pseudomonas syringae pv. tomato also up-regulated LeARG2 expression and argin
234 the bacterial pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola.
235 COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola.
236 acterial plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) causes disease in Arabidopsis
237      The plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) is found in a wide variety of
238 role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato.
239 sigma factor encoded by Pseudomonas syringae pv. tomato DC3000 (DC3000), a plant pathogen that is lik
240 on after infection with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), demonstrating that the t
241 st avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) carrying AvrRpt2, AvrB, or AvrPp
242                         Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen that caus
243 g22 or inoculation with Pseudomonas syringae pv. tomato DC3000 (PstDC3000) hrcC mutant, which is defi
244  resistance to virulent Pseudomonas syringae pv. tomato DC3000 (PstDC3000).
245 lecular function of the Pseudomonas syringae pv. tomato DC3000 (Pto) effector HopQ1.
246 allenge with strains of Pseudomonas syringae pv. tomato DC3000 allowing differentiation of basal resi
247 the biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 and for susceptibility to the necrotro
248 purified 6x His-HrpW of Pseudomonas syringae pv. tomato DC3000 and human transferrin.
249 stance to the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis ciner
250 ll as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-in
251                         Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in toma
252 al sensed by individual Pseudomonas syringae pv. tomato DC3000 cells during infection of Arabidopsis
253 to "mine" the genome of Pseudomonas syringae pv. tomato DC3000 for the metabolic potential to biosynt
254                         Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis
255 fection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 [PtoDC3000(DeltahQ)] w
256  The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 must detoxify plant-produced hydrogen
257 odel plant pathosystem, Pseudomonas syringae pv. tomato DC3000 on tomato and Arabidopsis thaliana hos
258 ut not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora ar
259 signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic
260                         Pseudomonas syringae pv. tomato DC3000 produces the phytotoxin coronatine, a
261  how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have f
262  The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered plant innate
263                     The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is re
264 nse, the plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the virulence factor coronatine t
265                         Pseudomonas syringae pv. tomato DC3000 was previously reported to produce two
266 athogen of A. thaliana (Pseudomonas syringae pv. tomato DC3000) using a proteomic approach.
267 a during infection with Pseudomonas syringae pv. tomato DC3000, corn (Zea mays) under herbivory by co
268 ne were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of bras
269  the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.
270 ocin, syringacin M from Pseudomonas syringae pv. tomato DC3000.
271 speck disease caused by Pseudomonas syringae pv. tomato expressing avrPto or avrPtoB.
272  resistance response to Pseudomonas syringae pv. tomato expressing avrRps4 and was cloned based on th
273 in tomato to strains of Pseudomonas syringae pv. tomato expressing the (a)virulence proteins AvrPto o
274 eraction of tomato with Pseudomonas syringae pv. tomato is an established model system for understand
275 ersicum), resistance to Pseudomonas syringae pv. tomato is elicited by the interaction of the host Pt
276 tor protein AvrPto from Pseudomonas syringae pv. tomato is secreted into plant cells where it promote
277 nomical relevant tomato-Pseudomonas syringae pv. tomato pathosystem is widely used to explore and und
278                     The Pseudomonas syringae pv. tomato protein AvrPtoB is translocated into plant ce
279  for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000.
280 ity to the hemibiotroph Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000) was attenuated in
281 t the annotation of the Pseudomonas syringae pv. tomato strain DC3000 genome sequence and is easily p
282                         Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Ara
283 cted a mutant screen of Pseudomonas syringae pv. tomato strain DC3000 to identify genes that contribu
284 se has been cloned from Pseudomonas syringae pv. tomato strain DC3000, Pseudomonas putida KT2440, and
285 genic bacteria, such as Pseudomonas syringae pv. tomato strain DC3000, the causative agent of tomato
286  the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000.
287 on inoculation with the Pseudomonas syringae pv. tomato strain DC3000.
288 ses upon recognition of Pseudomonas syringae pv. tomato strains expressing the AvrPto or AvrPtoB prot
289 acterial speck disease, Pseudomonas syringae pv. tomato, by recognizing the pathogen effector protein
290 d by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3
291  enhanced resistance to Pseudomonas syringae pv. tomato, which is consistent with a previous study sh
292 r AvrPtoB (HopAB2) from Pseudomonas syringae pv. tomato.
293 nd avirulent strains of Pseudomonas syringae pv. tomato.
294  in tomato is caused by Pseudomonas syringae pv. tomato.
295  an avirulent strain of Pseudomonas syringae pv. tomato.
296  to avirulent strain of Pseudomonas syringae pv. tomato.
297 t pathogenic bacterium, Pseudomonas syringae pv. tomato.
298 and, for the first time, Pseudomonas syringe pv. actinidiae.
299 t the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and
300 resistance to the pathogen Xanthomonasoryzae pv. oryzae (Xoo), suggesting the presence of a related d

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top