コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 d Ku-DNA end-binding activity, and increases radiosensitivity).
2 ity, and colony survival assays for cellular radiosensitivity.
3 s in the regulation of tumor and normal cell radiosensitivity.
4 ating a ROS-dependent mechanism for curcumin radiosensitivity.
5 receptor CD47 could correspondingly increase radiosensitivity.
6 ential therapeutic target for adjusting cell radiosensitivity.
7 repair, thus resulting in increased cellular radiosensitivity.
8 iated with defective V(D)J recombination and radiosensitivity.
9 mechanisms underlying mutant EGFR-associated radiosensitivity.
10 d by exposure to ionizing radiation enhanced radiosensitivity.
11 obiota-associated enhancement of endothelial radiosensitivity.
12 ich reduced ErbB1 activity, had no effect on radiosensitivity.
13 volved in microbial regulation of intestinal radiosensitivity.
14 red for the ATM protein to regulate cellular radiosensitivity.
15 sulted in a significant enhancement in AsPC1 radiosensitivity.
16 e degradation of ErbB2, yet had no effect on radiosensitivity.
17 iation exposure, and promotes an increase in radiosensitivity.
18 and GADD45beta expression and increased cell radiosensitivity.
19 cogenic K-ras signaling to pancreatic cancer radiosensitivity.
20 ristic facial features, immunodeficiency and radiosensitivity.
21 ocked IGF signaling, and enhanced tumor cell radiosensitivity.
22 Gleevec resulted in an enhancement in their radiosensitivity.
23 been implicated as a determinant of cellular radiosensitivity.
24 AS could thus be targets for manipulation of radiosensitivity.
25 chanism underlying flavopiridol-induced cell radiosensitivity.
26 evels of ATM expression, and restores normal radiosensitivity.
27 nd breaks, and telomere dysfunction provokes radiosensitivity.
28 d by other assays that can predict for their radiosensitivity.
29 sfunction, growth abnormalities, and extreme radiosensitivity.
30 g its role as a key contributor to stem cell radiosensitivity.
31 tein potentiates p53-dependent apoptosis and radiosensitivity.
32 he IGF-IR pathway prevents correction of the radiosensitivity.
33 and HT1080, respectively) leads to increased radiosensitivity.
34 on for future calculations of individualised radiosensitivity.
35 ce defects but not lymphocyte development or radiosensitivity.
36 eased polyploidy after IR, but did not alter radiosensitivity.
37 cells without BRCA1 showed decreased TCR and radiosensitivity.
38 a limited number of major genes determining radiosensitivity.
39 re was no relationship between G1 arrest and radiosensitivity.
40 n most wt-p53+ lines and are associated with radiosensitivity.
41 owing gamma-irradiation, but failed to alter radiosensitivity.
42 mologue (Yku70p), does not lead to increased radiosensitivity.
43 kout resulted in slower growth and increased radiosensitivity.
44 grow normally, and are fertile but show mild radiosensitivity.
45 -deficient tumors and consequently increased radiosensitivity.
46 tering to group patients based on esophageal radiosensitivity.
47 effect of Atm loss on tumor endothelial cell radiosensitivity.
48 e autophagy-deficient mice display increased radiosensitivity.
49 gies to overcome radioresistance and improve radiosensitivity.
50 tion to normal tissues while enhancing tumor radiosensitivity.
51 croenvironment was sufficient to limit tumor radiosensitivity.
52 pairing checkpoint activation and increasing radiosensitivity.
53 n enhanced cetuximab efficacy and tumor cell radiosensitivity.
54 signaling activity, which is associated with radiosensitivity.
55 ect of parthenolide on tumor and normal cell radiosensitivity.
56 in determining the cell-cycle phase-specific radiosensitivity.
57 fficiency as in other species, regardless of radiosensitivity.
58 ate the mechanisms by which p16 may regulate radiosensitivity.
59 ated a regulatory role for eIF4E in cellular radiosensitivity.
60 al therapeutic target to increase tumor cell radiosensitivity.
61 IF4E with ribavirin also enhanced tumor cell radiosensitivity.
62 deficiency syndrome associated with cellular radiosensitivity.
63 fect of miR-421 on cell cycle checkpoint and radiosensitivity.
64 comitantly with RT synergistically increases radiosensitivity.
65 tumor control rate was 87% versus 54% using radiosensitivity (2-Gy surviving fraction S(2) < 0.70 vs
66 n in Atm(-/-) mice increased crypt stem cell radiosensitivity 3.7-fold without sensitizing the microv
70 nvestigated gammaH2AX as a reporter of tumor radiosensitivity and a potential target to enhance the e
71 response in SCCs demonstrates enhancement in radiosensitivity and amplification of radiation-induced
73 clusion, inhibition of XIAP rescues cellular radiosensitivity and both DIABLO and XIAP might be poten
75 rad9-S4 and rad9-S5, reduced HU sensitivity, radiosensitivity and caused aberrant checkpoint function
77 g a checkpoint function and suggest that the radiosensitivity and chromosomal instability of Artemis-
78 hese include genetics, immune dysregulation, radiosensitivity and chronic infections such as Helicoba
79 risingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint
80 vidualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design
81 vidualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design
82 in a NONO-deficient background led to severe radiosensitivity and delayed resolution of DSB repair fo
83 hortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin
84 landscapes affect cellular heterogeneity in radiosensitivity and demonstrate the nonubiquitous natur
85 dicates that loss of PARP1 increases in vivo radiosensitivity and genomic instability in DNA-PKcs-def
87 ts uncovered DNA variants that contribute to radiosensitivity and identified genes that can be target
93 antiapoptotic function of Prx1 in modulating radiosensitivity and provides the impetus to monitor the
94 drome associated with cancer predisposition, radiosensitivity and radioresistant DNA synthesis-S phas
95 fore provide new insights into mechanisms of radiosensitivity and responses to radiotherapy as well a
97 - and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombinati
98 ese results indicate that MS-275 can enhance radiosensitivity and suggest that this effect may involv
100 rols showed evidence of enhanced chromosomal radiosensitivity and that this sensitivity was not age r
101 derstanding of the individual differences in radiosensitivity and the molecular basis of radiation re
102 ontains the PI-3 kinase domain, complemented radiosensitivity and the S-phase checkpoint and reduced
104 nt arrest responses, increased apoptosis and radiosensitivity, and augmented genetic instability (i.e
105 e frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level.
107 e phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growt
108 lts indicate that the effects of ATR on cell radiosensitivity are independent of NHEJ but are linked
109 vivo system developed to study IR-dependent radiosensitivity as a measure of clonogenic cell death.
110 relationship between DSB repair fidelity and radiosensitivity as well as the mechanisms associated wi
111 n of hsa-miR-125b in these cells resulted in radiosensitivity, as seen by reduced clonogenic survival
112 in a dose-dependent manner and enhanced cell radiosensitivity assessed by the clonogenic cell surviva
113 knockdown also reverses the cytotoxicity and radiosensitivity associated with PARP inhibition, sugges
115 in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism leve
116 ry of progenitor cells and, thus, red marrow radiosensitivity (because during the recovery period the
118 ge response pathways are key determinants of radiosensitivity but the extent to which these overlappi
119 ombined immunodeficiency (SCID) and cellular radiosensitivity, but hypomorphic mutations can cause mi
120 arer gene with a similar, additive effect on radiosensitivity, but the data are clearly consistent wi
122 inhibits NPC tumor growth and increases NPC radiosensitivity by directly regulating Jab1/CSN5 and th
125 n disease displaying chromosome instability, radiosensitivity, cancer predisposition, immunodeficienc
126 ciency characterized among other symptoms by radiosensitivity, cancer, sterility, immunodeficiency an
128 cribed as RS-SCID, in which patients display radiosensitivity combined with severe combined immunodef
129 fibroblasts, HCT-116 cells display moderate radiosensitivity compared to the other MMR-deficient lin
130 maH2AX radiation-induced foci; and increased radiosensitivity compared with TGFbeta competent cells.
131 hree HNPCC lines investigated show levels of radiosensitivity consistent with that displayed by norma
132 ells derived from this patient show dramatic radiosensitivity, decreased double-strand break rejoinin
133 res of human tumor cells of varying in vitro radiosensitivity, derived from tumors of varying radiocu
135 Previous studies have demonstrated that radiosensitivity, determined as a reduction in colony fo
138 Mutations in Mre11 and nibrin result in the radiosensitivity disorders ataxia-telangiectasia-like di
139 nal stem cells and microvascular compartment radiosensitivity, EndoMT and rectal damage severity.
143 have been associated with somewhat increased radiosensitivity for some end points, but none directly
147 neurodegenerative disorder characterized by radiosensitivity, genomic instability, and predispositio
149 its biological function in pancreatic cancer radiosensitivity have not been previously described.
150 rmore, reduction of mdm2 in vivo resulted in radiosensitivity, highlighting the importance of mdm2 as
151 adaptive responses as well as low-dose hyper-radiosensitivity (HRS) and increased radioresistance (IR
152 isease characterized by genetic instability, radiosensitivity, immunodeficiency and cancer predisposi
153 ibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predispos
154 drome, which we have termed RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features
155 NG finger 168 (RNF168), mutated in the human radiosensitivity, immunodeficiency, dysmorphic features,
156 sophageal expansion, as a method to quantify radiosensitivity in 134 non-small-cell lung cancer patie
158 ssential for radiation-induced autophagy and radiosensitivity in caspase-3/7 double-knockout cells.
159 t this increases its potential for measuring radiosensitivity in cells and may therefore have value i
161 othesis, we have studied the heritability of radiosensitivity in families of patients with breast can
166 review will discuss clinical implications of radiosensitivity in normal salivary glands, compare anim
169 ounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460,
170 A strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.
172 a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applica
173 ell cycle phase distribution, apoptosis, and radiosensitivity in squamous cell carcinoma (SCC) cell l
178 ed in our understanding of how P53 modulates radiosensitivity in tissues following IR as well as its
180 Sa-II), and whether this results in enhanced radiosensitivity in vivo, as assessed by in vivo/in vitr
181 of As(2)O(3)-induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with con
184 cant defect in NHEJ that leads to pronounced radiosensitivity is compatible with normal human viabili
186 , indicating that the effect of Hus1 on cell radiosensitivity is independent of nonhomologous end-joi
188 cellular radiation response is complex, and radiosensitivity may be also regulated at different leve
190 umans are associated with increased cellular radiosensitivity, microcephaly, facial dysmorphisms, gro
194 rast to the results seen in tumor cells, the radiosensitivity of a normal human fibroblast cell line
195 17DMAG was previously shown to enhance the radiosensitivity of a number of human cell lines, which
196 o)-17-demethoxygeldanamycin (17DMAG), on the radiosensitivity of a panel of human tumor cell lines.
201 e checkpoint responses and for the increased radiosensitivity of caffeine-treated cells [6] [7] [8].
203 treatment, but the relationship between the radiosensitivity of cancer cells and their genomic chara
204 trated to be a generic method to enhance the radiosensitivity of cancer cells with a supra-additive s
206 poration of GNPs has a significant effect on radiosensitivity of cells and their dose-dependent clono
207 survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phen
208 osen for evaluation because of the increased radiosensitivity of cells derived from AT patients and o
209 pair DNA double-strand breaks, increases the radiosensitivity of cells, and enhances radiation-induce
210 o repair DNA double-strand breaks, increases radiosensitivity of cells, and enhances radiation-induce
211 stitutively expressing PCNA protein restored radiosensitivity of CHO cells back to wild-type levels.
212 iosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor v
213 egulates DNA damage checkpoint responses and radiosensitivity of GSCs through nuclear translocation o
214 tal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and
215 Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent o
216 ize the effects of iNOS gene transfer on the radiosensitivity of human colorectal cancer cells in vit
217 nduction of apoptosis; and (b) increases the radiosensitivity of human prostate cancer cells by decre
218 es can enhance both the in vitro and in vivo radiosensitivity of human tumor cell lines generated fro
220 These results demonstrate the increased radiosensitivity of intestinal stem cells within the cry
221 s primarily a local treatment, the exquisite radiosensitivity of lymphomas to radiation has allowed r
228 alues for murine cellular turnover rates and radiosensitivity of progenitor cells were used in the mo
230 tabolites may play a role in determining the radiosensitivity of prostate cancer cells, and that the
233 an established biological rationale for the radiosensitivity of renal-cell carcinoma to stereotactic
234 ss this notion was to determine the level of radiosensitivity of several MMR-deficient cell lines der
235 ypothesized that As(2)O(3) might enhance the radiosensitivity of solid tumors by increasing tumor oxy
237 ma levels before RAIT may indicate increased radiosensitivity of the bone marrow, and use of this mea
239 enterocytes to the cell cycle increases the radiosensitivity of the crypt epithelium without changin
240 g activity correlates well with an increased radiosensitivity of the heat-shocked cells, and furtherm
242 justed according to the chemosensitivity and radiosensitivity of the tumor tissue in an individual pa
244 ults indicate that p53 does not regulate the radiosensitivity of TK6 cells through the apoptotic path
246 iation classifier that predicts the inherent radiosensitivity of tumor cell lines as measured by surv
248 of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosen
249 e that this anti-Ras adenovirus enhances the radiosensitivity of tumor cells but does not affect the
250 or neutralizing antibody to VEGF affects the radiosensitivity of tumor cells These findings support a
251 otein activity and potentially enhancing the radiosensitivity of tumor cells, we have investigated th
252 aluated the ability of dFdCyd to enhance the radiosensitivity of two human glioblastoma cell lines.
253 e effects of Gleevec on Rad51 levels and the radiosensitivity of two human glioma cell lines and a no
254 effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 pr
255 and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells,
257 ontrast, IGF-1R inhibition did not influence radiosensitivity or gammaH2AX focus resolution in LNCaP-
259 opic expression of hTERT does not rescue the radiosensitivity or the telomere fusions in A-T fibrobla
261 such as dose rate delivered, tumor size, and radiosensitivity play a major role in determining therap
263 uble strand break repair are associated with radiosensitivity, predisposition to cancer and immunodef
264 ic tumors and were independent of tumor cell radiosensitivity, proliferation rate, rate of tumor shri
265 model was able to effectively stratify X-ray radiosensitivity (R (2) = 0.74) without the use of any c
266 ents with lymphoblastoid cell lines, we used radiosensitivity, radioresistant DNA synthesis, and irra
267 able to identify three patient subgroups of radiosensitivity: radiosensitive, radio-normal, and radi
269 in stem cells significantly decreased their radiosensitivity, restored DDR function, and increased s
270 ibution in tumor and (b) the increased tumor radiosensitivity resulting from the improved tumor oxyge
271 nomic regions of functional significance for radiosensitivity (RS) but have yet to be systematically
272 TK-dependent signaling nor an enhancement in radiosensitivity, suggesting the potential for a therape
274 n in late-generation Terc-/- mice imparted a radiosensitivity syndrome associated with accelerated mo
276 ed consecutively according to their inherent radiosensitivities that may be reordered therapeutically
277 th siRNA to ErbB3 or 17DMAG had no effect on radiosensitivity, the combination, which reduced both Er
278 ine decreased P-Akt expression and increased radiosensitivity to a similar extent as nelfinavir.
279 ceptor-mediated internalization and enhances radiosensitivity to both Er-filtered and standard 250 kV
280 t on DNA DSB rejoining and no effect on cell radiosensitivity to killing although it sensitized contr
282 recombination and support the view that the radiosensitivity to killing of cells deficient in BRCA1
284 to angiogenesis inhibition, endothelial cell radiosensitivity, tumor cell apoptosis, or a decrease in
285 ent a kinetic model incorporating effects of radiosensitivity, tumor repopulation, and dead-cell reso
287 ons, and successfully fit to cellular proton radiosensitivity using a single dose-related parameter (
288 Although sorafenib does not affect intrinsic radiosensitivity using in vitro colony formation assays,
289 lls were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survi
290 is was strengthened by finding that cellular radiosensitivity was increased by genetic inhibition of
291 hypoxia, suggesting that the effect of DA on radiosensitivity was independent of these factors and a
296 xpression by small interfering RNA increased radiosensitivity, whereas increased radioresistance was
297 ominant-negative TRAF2 mutant also conferred radiosensitivity, whereas overexpression of wild-type (W
298 after irradiation resulted in an increase in radiosensitivity with dose enhancement factors of 1.9 an
299 fection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fol
300 ers showed clear evidence of heritability of radiosensitivity, with a single major gene accounting fo
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。