コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 the innate immune response to the distressed renal tubule.
2 be active urea secretion somewhere along the renal tubule.
3 he paracellular cation barrier of the distal renal tubule.
4 home specifically to injured regions of the renal tubule.
5 xpressed by L. kirschneri that colonized the renal tubule.
6 channel involved in NaCl reabsorption in the renal tubule.
7 ubject to an active secretory process by the renal tubule.
8 on of calcium transport processes within the renal tubule.
9 vity of different nephron segments along the renal tubule.
10 thelial ion flux and fluid generation by the renal tubule.
11 hesis by a genetic approach along the entire renal tubule.
12 of the proximal and the distal parts of the renal tubule.
13 ion and antiapoptosis during regeneration of renal tubules.
14 opportunity to pursue experiments on single renal tubules.
15 in which fluid-filled cysts displace normal renal tubules.
16 F by increasing local delivery of BNP to the renal tubules.
17 of stem cells and augmenting repopulation of renal tubules.
18 require polarization of epithelia that line renal tubules.
19 or to detect fluid flow through the lumen of renal tubules.
20 is found in greatest abundance in the distal renal tubules.
21 normal G alpha(s) expression in the proximal renal tubules.
22 ejecting kidney biopsies and co-expressed in renal tubules.
23 stitial cells, and macrophages in the distal renal tubules.
24 n rats, where infection is restricted to the renal tubules.
25 ateral membranes of hepatocytes and proximal renal tubules.
26 adult mice, the expression is restricted to renal tubules.
27 d the structural and functional integrity of renal tubules.
28 r of CaOx crystal formation and retention in renal tubules.
29 he nascent nephron that is the progenitor of renal tubules.
30 ystal formation and crystal retention in the renal tubules.
31 ron model revealed hot spots in the proximal renal tubules.
32 alamin and selective protein reabsorption in renal tubules.
33 suggesting defect(s) in Cl- reabsorption in renal tubules.
34 ossum kidney (OK) cells, a model of proximal renal tubules.
35 suggesting a Na+ reabsorption deficiency in renal tubules.
36 to several important transport functions in renal tubules.
37 Ig light chain deposition was evident within renal tubules.
38 nger in isolated membrane vesicles or intact renal tubules.
39 re distinguishable in the tissue surrounding renal tubules.
40 tes, GLUT2 transporters are overexpressed in renal tubules.
41 alcium oxalate monohydrate (COM) crystals in renal tubules.
42 of ribosomal protein S6 (rpS6) in activated renal tubules.
43 he preconditioning dose of endotoxin and the renal tubules.
44 e epithelial cells of distal segments of the renal tubules.
45 IHC of kidneys localized FAM20A in the renal tubules.
46 , stellate cells, in Drosophila melanogaster renal tubules.
47 induces phosphaturia through its effects on renal tubules.
48 in SCC diagnosis, we found p53+ cells in the renal tubules.
49 proliferating cell nuclear antigen-positive renal tubules.
50 luid transport by the Drosophila Malpighian (renal) tubule.
51 ed fluid transport by Drosophila Malpighian (renal) tubules.
52 al fluid transport by Drosophila Malpighian (renal) tubules.
53 oxcarbazepine can enhance the sensitivity of renal tubules, a reduction in desmopressin dose might be
54 dney, characterized by cystic enlargement of renal tubules, aberrant epithelial proliferation, and io
58 membrane protein that is expressed along the renal tubule and exposed to a wide range of concentratio
59 olarity, found that many dividing pre-cystic renal tubule and hepatic bile duct cells from Tsc1, Tsc2
61 effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects t
65 Animals that overexpress soluble Crry in renal tubules and elsewhere are protected from the acute
66 ic kidney disease (ADPKD) cysts develop from renal tubules and enlarge independently, in a process th
68 rfamily of cytokines, is highly expressed in renal tubules and generally promotes maintenance of epit
70 xperiments were conducted in isolated canine renal tubules and in a canine autotransplant model of hy
71 cialized epithelia of the choroid plexus and renal tubules and in connective tissues of the eye, ovar
73 tion, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed u
75 f an increase in sympathetic activity on the renal tubules and is insufficient to produce these effec
77 es derived from it, one of which deposits in renal tubules and one of which displays no renal pathoge
78 y intravital microscopy revealed dilation of renal tubules and peritubular capillaries within 20 minu
80 e can lead to PTH resistance in the proximal renal tubules and thus lead to impaired regulation of mi
81 s during cold storage preservation injury in renal tubules and to determine whether these changes con
83 show that BMDC can respond by engrafting the renal tubules and undergo DNA synthesis after acute rena
85 omarker of increased oxidative stress in the renal tubule, and demonstrate that antioxidants can atte
86 ng step of sodium reabsorption in the distal renal tubule, and thus may play a key role in the mainte
87 d microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology.
88 munoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesi
89 ntetate dimeglumine enabled visualization of renal tubules, and hypointensity from cationic ferritin
91 hemistry, UbA52 was exclusively localized to renal tubules, and its expression was markedly increased
92 tor expression was specifically increased in renal tubules, and myofibroblastically phenotypic transi
95 ss were obtained within 3.2 minutes to image renal tubules, and T2*-weighted images of the same resol
96 eactive nitrogen species (RNS) generation by renal tubules, and the inducible nitric oxide synthase i
97 d convergent extension (CE) shape developing renal tubules, and their disruption has been associated
98 uptake of the fusion protein in the proximal renal tubules, and, therefore, could significantly reduc
99 ic beta-cells, small intestine, and proximal renal tubule are encoded by the 12 exons of the PKLR gen
101 appear in PKD kidneys and that PKD-deficient renal tubules are predisposed to abnormally increased cy
102 crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of o
103 ciated with increased delivery of BNP to the renal tubules as evident by a greater urinary BNP excret
104 sis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy
105 al hemofiltration cartridge in series with a renal tubule assist device (RAD) containing 10(9) porcin
106 al hemofiltration cartridge in series with a renal tubule assist device (RAD) containing 109 renal pr
110 nsgene recapitulated Gata3 expression in the renal tubules but failed to direct sufficient GATA3 acti
111 on in the parathyroid, the placenta, and the renal tubule, but its overall physiological and patholog
112 e kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependen
113 uired for efficient destruction of the graft renal tubules by CD8 effectors directed to donor MHC I a
114 absorbed from the lumen of the intestine and renal tubules by, respectively, enterocytes and renal ep
115 of the renal Ca receptor (CaR) may decrease renal tubule Ca reabsorption and cause hypercalciuria th
117 ts demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive
118 dent amino acid transporters in the proximal renal tubule, causing a reduction in amino acid resorpti
121 ), a major physiologic regulator of proximal renal tubule cell sodium-phosphate cotransport, stimulat
123 n of a synthetic hemofiltration device and a renal tubule cell therapy device containing porcine rena
124 abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammat
125 nt injuries induce cholesterol increments in renal tubule cells and that statins sensitize these cell
127 ubule cell therapy device containing porcine renal tubule cells in an extracorporeal perfusion circui
128 ve effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral tran
131 its sodium-phosphate cotransport in proximal renal tubule cells through activation of several kinases
132 eins to the same subcellular regions such as renal tubule cells where the proteins are associated wit
133 hat cisplatin causes apoptotic cell death in renal tubule cells, but the underlying molecular mechani
134 rs of dUTP-biotin nick end labeling-positive renal tubule cells, suggesting that increased lethality
143 ng manba expression in zebrafish resulted in renal tubule defects and pericardial edema, phenotypes t
144 including glomerular crescent formation and renal tubule defects in early disease, which progressed
146 eotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule
147 inositide 3-kinase-C2alpha (PI3K-C2alpha) in renal tubule-derived inner medullary collecting duct 3 c
148 cAMP can stimulate fluid secretion early in renal tubule development during the time when renal cyst
149 PKD1 gene product, plays a critical role in renal tubule diameter control and disruption of its func
151 riptional target, MIM, resulted in extensive renal tubule dilation and cysts, whereas Hdac5 heterozyg
152 disease, including biliary epithelial cysts, renal tubule dilation, organ fibrosis, and basement memb
157 a skin cancer and nonprogressive, reversible renal tubule effects were observed with avagacestat.
158 r1.1, encoded by KCNJ1) critically regulates renal tubule electrolyte and water transport and hence b
162 ed along the entire nephron, its function in renal tubule epithelial cells remains unclear, as no spe
166 ey; increases proliferation and apoptosis of renal tubule epithelial cells; elevates protein kinase A
168 lium, hepatocytes, thymocytes, plasma cells, renal tubule epithelium, spermatogonia, prostatic secret
169 NRP could mediate attachment of CaOx to the renal tubule epithelium, thereby causing retention of cr
170 transgenic mice expressed Cre recombinase in renal tubules, especially collecting ducts and thick asc
172 with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysf
173 ells and cooperate to enhance and accelerate renal tubule formation in uninduced rat metanephric mese
176 formoterol restored renal function, rescued renal tubules from injury, and diminished necrosis after
178 -smooth muscle actin (SMA) were increased in renal tubules from kidney transplant recipients on calci
180 layers in mammalian microvessels of choroid, renal tubules, glomerulus, and psoas muscle all showed s
183 long the basolateral surface of the proximal renal tubule in association with L-fucose, the potential
184 that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabs
186 fic expression of cadherin-6 in the proximal renal tubules in normal human kidney and suggest that al
187 increasing the cold storage time of isolated renal tubules in University of Wisconsin solution caused
188 e nitric oxide (NO) is cytotoxic to isolated renal tubules, inhibition of NO production in vivo invar
190 tion of miRNAs in CDs spontaneously evokes a renal tubule injury-like response, which culminates in p
192 the human sickle kidney, HO-1 is induced in renal tubules, interstitial cells, and in the vasculatur
195 neuroendocrine stimulation of the Drosophila renal tubule is an extensive remodeling of the mitochond
197 communication between different parts of the renal tubule is increasingly recognized as an important
201 alcium oxalate monohydrate (COM) crystals to renal tubules is thought to be one of the critical steps
202 PTHrP, and PTHrP expression in rat proximal renal tubules is upregulated in response to ischemic inj
203 peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during r
206 ajor role is played by the kidney, where the renal tubule matches the urinary magnesium excretion and
208 sgenic progeny expressed lacZ exclusively in renal tubules, mesonephric tubules, ureteric bud, develo
209 Here, we used RNA-seq coupled with classic renal tubule microdissection to comprehensively profile
212 rk demonstrates that repopulation of damaged renal tubules occurs primarily from proliferation of tub
217 ed expression of TLR4 but not of TLR2 in the renal tubules of human kidneys with diabetic nephropathy
219 in many cell types in the kidney, including renal tubules of the outer stripe of the medulla, glomer
224 helial ion and water flux in the Malpighian (renal) tubules of the fly, which are in direct contact w
225 tered gadopentetate dimeglumine to visualize renal tubules on T1-weighted gradient-refocused echo (GR
226 the sodium transporters expressed along the renal tubule, only the 70 kDa form of the y-subunit of t
227 within the tight junction of cultured canine renal tubule or human intestinal epithelial monolayers.
228 ach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically en
229 omponents of salt reabsorption in the distal renal tubule), possibly through adenylate cyclase and cy
231 lized to the basolateral membranes of normal renal tubules, predominantly thick ascending limbs of He
232 in Solution and reperfused in vitro to model renal tubule preservation injury, which was assessed by
233 ynitrite (1 mM) directly to freshly isolated renal tubules produced strong nitrotyrosine signals but
234 miRNA-processing enzyme Dicer from maturing renal tubules produces tubular and glomerular cysts in m
235 produce a nitrotyrosine signal in extracted renal tubule proteins but significantly impaired transpo
236 ine renal tubular cells and freshly isolated renal tubules rapidly absorbed RCM, plasma membrane inte
237 ithelium is key to renal physiology, but how renal tubules regulate capillary development remains unc
238 red in vivo for a Wnt response to injury and renal tubule repair, the absence of which triggers cysto
239 cient method for the genetic manipulation of renal tubules, representing a quick and versatile altern
241 roximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency signifi
242 median depth of 8261 genes in microdissected renal tubule samples (105 replicates in total) and glome
245 sively profile gene expression in each of 14 renal tubule segments from the proximal tubule through t
246 Global miRNA profiling of microdissected renal tubules showed that miRNAs exhibit segmental distr
247 endogenous SLC41A1 specifically localized to renal tubules situated at the corticomedullary boundary,
248 e that parathyroid hormone inhibits proximal renal tubule sodium-phosphate cotransport through a sign
250 VHL mRNA was differentially expressed within renal tubules suggesting that the VHL gene product may h
251 rfaces of lipids and proteins that may mimic renal tubule surfaces while allowing direct visualizatio
254 an kidney is composed of roughly 1.2-million renal tubules that must maintain their tubular structure
255 required for lumen continuity in developing renal tubules, though its mechanism of action remains un
256 we show that selective activation of HIF in renal tubules, through Pax8-rtTA-based inducible knockou
259 transgene, a predominant isoform of PHDs in renal tubules, to reduce HIF-1alpha level significantly
260 ing a simulated (1)H NMR data set to emulate renal tubule toxicity and further exemplified this metho
263 ncludes characterization of a urate-specific renal tubule transporter explaining many aspects of rena
265 that endotoxin toxicity to nonpreconditioned renal tubules was direct and independent of immune cells
266 g content of HTL in chronically infected rat renal tubules was indistinguishable from that of IVCL.
268 ehind the ability of BMP-7 to repair damaged renal tubules, we hypothesized that systemic treatment w
269 was induced 6 h after nephrotoxic serum and renal tubules were identified as the site of expression
271 -MAG3) is excreted almost exclusively by the renal tubules, whereas (99m)Tc-diethylenetriamine pentaa
274 tably, albumin overload induced apoptosis in renal tubules, which was less severe in PKC-delta-knocko
275 teomics' approach, which profiles the entire renal tubule with regard to changes in Na+ transporter a
276 It also limits diameters of differentiating renal tubules, with mutation of certain components of th
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。