戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 tic optimization of all steps in the complex repair reaction.
2 th reduced activity in multiple steps of the repair reaction.
3 dent on homologous recombination, a core DNA repair reaction.
4  travel along DNA at different stages of the repair reaction.
5 alytic cofactor, not a substrate, in the DNA repair reaction.
6 essentially normal in all three steps of the repair reaction.
7 nalogous to a "half" double-strand break gap-repair reaction.
8  production of incision intermediates in the repair reaction.
9 nal link between cooperative binding and the repair reaction.
10 nd synthesis and fills small gaps during DNA repair reactions.
11 chaperones in poly(ADP-ribose)-regulated DNA repair reactions.
12  cellular DNA replication, recombination and repair reactions.
13 te replication and local protection from DNA repair reactions.
14  that represses DNA damage signaling and DNA repair reactions.
15  diverse DNA replication, recombination, and repair reactions.
16 hazards, as they can instigate inappropriate repair reactions.
17 ormed during replication, recombination, and repair reactions.
18 1 (Rnl1), catalyzes the identical set of RNA repair reactions.
19 mplex and directly participating in excision repair reactions.
20  APLF in chromosomal DNA double-strand break repair reactions.
21 mprove our understanding of the AGT-mediated repair reaction and our understanding of the spectrum of
22 was followed by packaging DNA recovered from repair reactions and determining the yield of infective
23 ly increased the efficiency of reconstituted repair reactions and was required for complementation of
24 product which is essential for general/basal repair reactions, and (iii) requires the CSA and CSB pro
25 tL in vitro, inhibiting the overall mismatch repair reaction, as well as MutH activation.
26 atch, perhaps as a mobile clamp facilitating repair reactions at distant sites on DNA, until ATP is h
27 1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immu
28 rily into 30 nm structures when incubated in repair reaction buffers.
29                 The protein carries out this repair reaction by transferring the alkyl group to an ac
30 rstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A.
31                                           In repair reactions catalyzed by cell extracts we have used
32                                 In addition, repair reactions catalyzed by DNA polymerase beta were f
33                            The in vitro gene repair reaction combined plasmid, repair oligonucleotide
34                                          The repair reaction displays specificity for DNA polymerase
35 tually a deubiquitination event once the DNA repair reaction has been completed.
36                              Recently, a G:U repair reaction has been reconstituted with several puri
37                                        This "repair" reaction helps to maintain proper protein confor
38 a lesion in DNA during a nucleotide excision repair reaction in vitro, KMnO4 footprinting experiments
39 1), has been shown to stimulate the mismatch repair reaction in vitro.
40 hat wild type RPA is required for a mismatch repair reaction in vitro.
41 issues that can catalyze the first step of a repair reaction in which age-damaged proteins containing
42 es establishes their capacity to perform RNA repair reactions in vivo.
43 for the co-ordination of double-strand break repair reactions in which two DNA ends are required to r
44       In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent
45 of integrase protein to gapped DNA inhibited repair reactions, indicating that gap repair in vivo may
46                                          The repair reaction involves three main steps: (i) dual inci
47 ccurate quantitation of the kinetics of base repair reactions involving an abasic site product.
48                                   Third, the repair reaction is absolutely dependent on the products
49 wever, the function of ATP hydrolysis in the repair reaction is controversial.
50                                 Because this repair reaction is directly coupled to extensive replica
51               The molecular mechanism of the repair reaction is poorly understood.
52 nize specific DNA substrates and promote key repair reactions is an important challenge for the futur
53                           This multistep DNA repair reaction operates by the sequential assembly of p
54 he length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucle
55 tudies of the dioxygen-activation and damage-repair reactions performed by AlkB.
56                  Examination of the complete repair reaction products from this reaction following el
57      In addition, the proteins mediating the repair reactions represent potential targets for therape
58  in which mammalian cells use novel excision repair reactions (requiring the XPF and ERCC1 proteins)
59 R is not reversed by addition of zinc to the repair reaction, suggesting that the target is not a zin
60                     First, the dsb induces a repair reaction that is directly coupled to extensive pl
61 , such structures are subject to a low level repair reaction that occurs with little strand bias.
62 e local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including j
63 volved in the coordination of the sequential repair reactions that lead to long-patch BER, we have in
64 s, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cycli
65 ir proteins because of the complexity of the repair reaction, which involves extrusion of the target

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。