コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ted to the pedicels (and, in some cases, the sepals).
2 in the variability of clones throughout the sepal.
3 t a continuous mechanical model of a growing sepal.
4 on throughout most of the development of the sepal.
5 and cell size patterning in the Arabidopsis sepal.
6 outer epidermis of the Arabidopsis thaliana sepal.
7 to four extra petals, and one or two missing sepals.
8 of all four SEP genes in the development of sepals.
9 nes are also expressed in the guard cells of sepals.
10 s and, possibly, palea and lemma as modified sepals.
11 oduce flowers in which all organs develop as sepals.
12 of the floral organs examined apart from the sepals.
13 the growth of clones of cells in Arabidopsis sepals.
14 neighboring cell growth was reduced in ftsh4 sepals.
15 may not control the identity of the petaloid sepals.
16 ased numbers of sepals and exhibit fusion of sepals.
21 nes of 'Hayward' kiwifruit, at the "break of sepals", about one week before anthesis, to study its ef
25 fl) phenotype, where defects are observed in sepal and petal development, but leaf blades are apparen
26 jag alleles have their strongest effects on sepal and petal development, suggesting that JAG may act
27 The A-class gene APETALA2 (AP2) promotes sepal and petal identities in whorls 1 and 2 and restric
28 istem identity but function independently in sepal and petal identity (AP1) and in proper fruit devel
30 ly, the role of APETALA1 as an "A-function" (sepal and petal identity) gene is thought to be Brassica
31 est known for the role of AP1 in Arabidopsis sepal and petal identity, the canonical A function of th
36 of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role
40 versions of floral organ whorls 2 and 3 into sepals and carpelloid structures, respectively, similar
41 We show that bnq3 mutants have pale-green sepals and carpels and decreased chlorophyll levels, sug
49 elopmentally in young flowers, and in mature sepals and ovaries, whereas transcript for hmg3.3 accumu
50 t U1-70K is necessary for the development of sepals and petals and is an essential gene in plants.
51 -function is required for the development of sepals and petals and to antagonize the C-function in th
52 a striking increase in the longevity of the sepals and petals as well as delays in a selected set of
53 roductive tissue, expression was observed in sepals and petals before anthesis, and in all floral org
54 whorls, where it specifies the identities of sepals and petals by restricting the expression of AGAMO
55 e organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure.
56 In many plants, including Arabidopsis, the sepals and petals form distinctive nanoridges in their c
59 loral organ abscission, and produced leaves, sepals and petals with diminished blades, indicating a r
60 inct floral organs, including differentiated sepals and petals, and a perianth distinct from stamens
62 le flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-
63 be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that p
64 epetition of sepals and stamens, rather that sepals and petals, as is observed in agamous single muta
65 in floral organ number, particularly in the sepals and petals, correlating with an increase in the w
66 d sepal-to-petal transformations and/or more sepals and petals, suggesting interference with N. benth
76 indeterminate and consist of a repetition of sepals and stamens, rather that sepals and petals, as is
77 petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem i
78 The first (outermost) whorl consists of four sepals and the fourth (innermost) whorl is made up of tw
79 tight cluster; it also has narrower leaves, sepals, and petals than either single mutant or wild-typ
81 P10 Nkx2-5(+/R52G) mice demonstrated atrial sepal anomalies, with significant increase in the size o
83 s plants is seen in flowers where individual sepals are fused along the lower part of their margins.
84 tem formation, coupled with slower growth of sepals at 15 degrees C, produced larger intersepal regio
89 demonstrates that differential growth in the sepal can generate transverse tensile stress at the tip.
91 ent field accurately describes the growth of sepal cell lineages and reveals underlying trends within
93 to AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and foun
94 ransitional staminodes, a staminal tube, and sepal cup can be viewed as prehypanthial, lacking only f
95 loral characters of the fossils, including a sepal cup, staminal tube, and apparently nectariferous s
97 gen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen a
98 more, in non-embryonic tissues (true leaves, sepals), DEK1 is required for epidermis differentiation
99 f a conserved petal identity program between sepal-derived and stamen-derived petaloid organs in the
101 are not expressed during the development of sepal-derived petals and are not implicated in petal ide
102 utant that exhibits defects in whorl 2 where sepals develop in place of petals, but third whorl stame
104 ts, aberrant phyllotaxy of flowers, aberrant sepal development, floral buds that open precociously, a
105 ng, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of
106 ut are lost progressively at later stages of sepal development, indicating that CUS2 is crucial for t
107 d TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX ge
111 reduction in cuticular ridges on the mature sepal epidermis, but only a moderate effect on petal con
113 nescent tissues: leaves, cotyledons, petals, sepals, filaments, stigmas, nectaries and siliques.
114 alyze the epidermal cells of the Arabidopsis sepal, focusing on cortical microtubule arrays, which al
118 AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its c
121 y meristem growth and in floral meristem and sepal identity and that they also play a key role in fru
122 euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transi
126 sion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits
127 tions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on th
128 resh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short sta
129 ies, exhibit numerous instances of petal and sepal loss, transference of petal function between flora
132 omical analysis indicates that the fusion of sepal margins precludes shedding even though abscission,
133 3 expression was strongest in the petals and sepals of developing flowers and declined after flower o
134 nt in epidermal tissue of roots, petals, and sepals of flower buds, papillae cells of flowers, siliqu
135 ter activity of AtBSMT1 was localized to the sepals of flowers, and also to leaf trichomes and hydath
137 observed within organ primordia, such as the sepals of terminal flowers produced by centroradialis mu
140 ons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility
143 r amounts in leaves, fruit coats, seeds, and sepals; Pap2 transcript was abundant only in the petals;
144 pocotyl, roots, various parts of the flower (sepals, pedicle, style, etc.) and in the stigmatic and a
145 However, like AP2, LIP genes play a role in sepal, petal and ovule development, although some of the
146 HUA2, leads to the production of third whorl sepal-petal-stamens and fourth whorl sepal-carpels.
147 uses and defects in the timely elongation of sepals, petals and stamens, similar to 35S::KNAT1 plants
149 om transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and mat
150 expression in the abscission zones where the sepals, petals, and stamens attach to the receptacle, at
151 ifferentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may
152 wers are organized into concentric whorls of sepals, petals, stamens and carpels, with each of these
153 , and cotyledons) and reproductive (pistils, sepals, petals, stamens, and floral buds) organs examine
156 ssed at moderate levels in leaves, pedicels, sepals, pistils and petals, and at very low levels in ro
158 pi-5 flowers, second whorl organs develop as sepals rather than petals, but third whorl stamens are n
161 to stress in katanin and spiral2 mutant made sepal shape dependent on trichome number, suggesting tha
162 no significant effect of trichome number on sepal shape in wild-type and lines with trichome number
163 model of the sepal, we predict an impact on sepal shape that is validated experimentally using mutan
164 recision, we designed a screen for disrupted sepal size and shape uniformity in Arabidopsis and ident
165 n TF binding elements--CArG-boxes, directing sepal specific expression in Arabidopsis--were accrued i
166 stic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, re
167 d that gene expression was restricted to the sepals, stigmas, anther filaments, and receptacles, reac
168 s of sepals with a diminished third whorl of sepals surrounding a fourth whorl of carpels, or three w
170 ity, with flowers containing three whorls of sepals surrounding fertile carpels, two whorls of sepals
171 rary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-
172 ovary, and pollen grains, but low in petals, sepals, the epidermis of anthers, styles, and filaments.
176 the two compounds is restricted to glandular sepal tips; thus, differential expression analysis of co
178 es in the Arabidopsis (Arabidopsis thaliana) sepal to determine how the growth curves of individual c
179 type, in which homeotic transformations from sepals to carpels are found in flowers derived from old
182 chanical feedback in our growth model of the sepal, we predict an impact on sepal shape that is valid
183 In both bgal10 and bgal10 xyl1, siliques and sepals were shorter, a phenotype that could be explained
184 ifferent flower organs (carpels, petals, and sepals) were profiled for the first time at a spatial re
185 rmed a gradient in the developing leaves and sepals, whereas low or no GUS activity was detected in t
186 ing of the cellular variability in wild-type sepals, which is disrupted in the less-variable cells of
187 re observed in siliques, carpels, petals and sepals while stemlike organs (filaments and pedicels) ha
188 ng production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion
189 ss, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, an
190 s surrounding fertile carpels, two whorls of sepals with a diminished third whorl of sepals surroundi
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。