コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 falciparum cell fate by repressing parasite sexual differentiation.
2 and SRD5A2 which are both required for human sexual differentiation.
3 tive splicing may be an important feature of sexual differentiation.
4 that SAGA has two opposing roles regulating sexual differentiation.
5 nal and gonadal steroidogenesis and for male sexual differentiation.
6 n kinase kinase kinase (MAPKKK) essential to sexual differentiation.
7 estrogens, dietary phytoestrogens can affect sexual differentiation.
8 by tra-1, the master regulator of C. elegans sexual differentiation.
9 for GATA4 and FOG2 transcription factors in sexual differentiation.
10 on of three known targets to mediate somatic sexual differentiation.
11 ng switch that is required during Drosophila sexual differentiation.
12 nes and characterized their phenotype during sexual differentiation.
13 l sheep brain during the critical period for sexual differentiation.
14 rmine whether these steroid hormones mediate sexual differentiation.
15 lop during the postnatal critical period for sexual differentiation.
16 y (P) 6, when the song circuit is undergoing sexual differentiation.
17 factor in Drosophila that regulates somatic sexual differentiation.
18 ion to affect a G0 cell-cycle checkpoint and sexual differentiation.
19 ting-type locus operates at telomeres during sexual differentiation.
20 d therefore may contribute to the process of sexual differentiation.
21 xpression are often associated with abnormal sexual differentiation.
22 r neural origin also likely played a role in sexual differentiation.
23 e is known about the initiation of germ cell sexual differentiation.
24 appearance of male gonads and thus for male sexual differentiation.
25 of brain cells contributes to the process of sexual differentiation.
26 and in testes where it plays a role in male sexual differentiation.
27 female reproductive tract during normal male sexual differentiation.
28 dentify a core regulatory mechanism in plant sexual differentiation.
29 ent of sex chromosomes may contribute to its sexual differentiation.
30 le fetuses is an essential step in mammalian sexual differentiation.
31 plicing factor in both vegetative growth and sexual differentiation.
32 n the global regulatory pathway and terminal sexual differentiation.
33 eptor maintenance, normal transcription, and sexual differentiation.
34 that one of them, nam1, regulates entry into sexual differentiation.
35 of the timing and hormonal cues that govern sexual differentiation.
36 ry information to one day reverse defects of sexual differentiation.
37 xposure to gonadal steroids results in brain sexual differentiation.
38 ells is independent of the somatic events of sexual differentiation.
39 ng samples and are applicable after embryos' sexual differentiation.
40 ct the developmental program leading to male sexual differentiation.
41 vely in the mammalian genital ridge prior to sexual differentiation.
42 ene of Drosophila plays an important role in sexual differentiation.
43 sential for mammalian gonadogenesis prior to sexual differentiation.
44 ibited a wild-type phenotype with respect to sexual differentiation.
45 y, doublesex and intersex, to control female sexual differentiation.
46 experience-dependent neural plasticity, and sexual differentiation.
47 on of the mullerian ducts during normal male sexual differentiation.
48 c splicing of multiple pre-mRNAs involved in sexual differentiation.
49 pecific genetic influences from any study of sexual differentiation.
50 iae STE11, is required for pheromone-induced sexual differentiation.
51 ullerian ducts, an essential process in male sexual differentiation.
52 s is one of the earliest indications of male sexual differentiation.
53 ets, and ELAV/Hu proteins can interfere with sexual differentiation.
54 d transposase-derived endonuclease vital for sexual differentiation.
55 t PfAP2-G function is essential for parasite sexual differentiation.
56 lated alternative splicing during Drosophila sexual differentiation.
57 uenced by unknown mechanisms associated with sexual differentiation.
58 l cycle progression in G1 phase and promoted sexual differentiation.
59 pc embryos, a developmental stage before the sexual differentiation.
60 play during the switch from proliferation to sexual differentiation.
61 l signals that induce gene expression during sexual differentiation.
62 response to nutritional signals that induce sexual differentiation.
63 fore be integrated into a realistic model of sexual differentiation.
64 ng for Mullerian duct regression during male sexual differentiation.
65 ve opposing regulatory roles during S. pombe sexual differentiation.
66 e homozygotes fail to develop ovaries during sexual differentiation.
67 conserved in metazoan sex determination and sexual differentiation.
68 s, but also a model to understand defects in sexual differentiation.
69 s required continuously through the onset of sexual differentiation.
72 n of Drosophila TRA-2, affecting both female sexual differentiation and alternative splicing of dsx p
73 n about the molecular basis of this abnormal sexual differentiation and any associated sexual dysfunc
74 ng a role for miR-124 in the control of male sexual differentiation and behavior, by limiting inappro
75 indicates that in utero BPA exposure affects sexual differentiation and behavior; however, the mechan
76 in studies of the molecular neurogenetics of sexual differentiation and behaviour has come from the u
77 d light on the pathogenesis of a disorder of sexual differentiation and brainstem-mediated sudden dea
78 fic cell types of the animal fetus to induce sexual differentiation and concentration peaks of the pl
79 f autophagy genes were necessary for asexual/sexual differentiation and deoxynivalenol (DON) producti
80 e causative agent of malaria, has to undergo sexual differentiation and development in anopheline mos
81 estosterone and 11-ketotestosterone, control sexual differentiation and development in juveniles and
82 ts suggest that PfPufs might function during sexual differentiation and development in Plasmodium thr
83 utilization exist, suggesting that complete sexual differentiation and development likely involve ad
87 natomic and cellular changes that constitute sexual differentiation and discusses SRY and other genes
88 t through control of downstream effectors of sexual differentiation and dosage compensation [1, 4].
89 r GHMP kinase family members as mediators of sexual differentiation and dosage compensation and, poss
90 cripts, the Sex-lethal protein (SXL) governs sexual differentiation and dosage compensation in Drosop
91 bryogenesis at three time points surrounding sexual differentiation and female meiotic initiation, an
92 d hormones exert a profound influence on the sexual differentiation and function of the neural circui
93 f perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inpu
94 in the Drosophila LAMMER kinase, Doa, alter sexual differentiation and interact synergistically with
95 the genital ridge and Wolffian duct prior to sexual differentiation and is expressed at higher levels
96 ne doublesex, which controls many aspects of sexual differentiation and is necessary for normal court
99 gen; this event is essential for proper male sexual differentiation and occurs between embryonic days
100 arasite Plasmodium berghei, Pbmap-2, in male sexual differentiation and parasite transmission to the
101 or superfamily, plays a central role in male sexual differentiation and prostate cell proliferation.
102 rfamily that plays an important role in male sexual differentiation and prostate cell proliferation.
105 aditional concepts about mechanisms of brain sexual differentiation and reveal a significant function
107 three, differential cell death is central to sexual differentiation and shared molecular mechanisms h
109 be MAP kinases are known, Spk1, required for sexual differentiation and sporulation, and Spc1/Sty1/Ph
114 quired for cell cycle control, initiation of sexual differentiation, and protection against cellular
115 nd anti-Mullerian hormone which mediate male sexual differentiation, and the female developmental pat
116 lpha components are insufficient to regulate sexual differentiation, and we identify a novel alpha-sp
117 icating different aspects of C. elegans male sexual differentiation are coordinated among DM domain f
118 om mice at d 10.5 postconception (PC) before sexual differentiation, at d 17.5 PC after the first emb
119 inally, the set of genes induced late during sexual differentiation, at the time of spore formation,
120 Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regul
121 ides have recently been reported to modulate sexual differentiation by interacting with nuclear stero
124 le or female cells, even from embryos before sexual differentiation, differ in gene expression and se
125 ndirect effects, notably the consequences of sexual differentiation, display complex dependencies.
126 mpromised in splicing functions required for sexual differentiation, displaying only partial autoregu
127 xpression during a sensitive period of brain sexual differentiation disrupts the organization of sex
129 tate in the germ line from the initiation of sexual differentiation during fetal development and into
130 . elegans is well studied, but regulation of sexual differentiation, especially later in gonadal deve
131 te global sexual fate into appropriate local sexual differentiation events is perhaps the least under
134 atching day 25 during a heightened period of sexual differentiation (following BrdU injections on day
137 orted here, we have examined the role of the sexual differentiation genes transformer (tra) and doubl
138 cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembra
140 of specific genes involved in the process of sexual differentiation has made it possible to determine
143 several components of the pathway regulating sexual differentiation have been elucidated, the mechani
144 Consistent with such a terminal function in sexual differentiation, her encodes a protein with C2H2-
145 hese X-linked brain genes may play a role in sexual differentiation if they are expressed at a higher
146 cates a role for environmental modulation of sexual differentiation in amphibians, which are assumed
147 4 develop essentially normally, undergo full sexual differentiation in both sexes, and are fertile.
148 mple of a key regulator of cell identity and sexual differentiation in C. neoformans, and its identif
149 nt Drosophila species supports the idea that sexual differentiation in D. melanogaster and D. virilis
150 e DNA binding motif, have been implicated in sexual differentiation in diverse metazoan organisms.
151 T proteins) control sex determination and/or sexual differentiation in diverse metazoans and are impl
163 ch to the 'function' question is to contrast sexual differentiation in standard laboratory animals wi
165 iae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccha
166 bility, polarized growth and cell shape, and sexual differentiation in the fission yeast, Schizosacch
167 n hormone (AMH) is an essential messenger of sexual differentiation in the foetus and is an emerging
168 physiological functions including secondary sexual differentiation in the male and the induction of
169 Here, we traced the initiation of germ cell sexual differentiation in XX gonads using the Stra8 gene
170 ggesting that different song nuclei initiate sexual differentiation independently of transsynaptic ma
171 own of DMRT1 expression during the period of sexual differentiation induces feminisation of male embr
172 Conversion from asexual proliferation to sexual differentiation initiates the production of the g
173 he Ser2 requirement for transcription during sexual differentiation is bypassed by subtracting Ser7,
176 Exposure to estrogens during the period of sexual differentiation is known to adversely affect the
177 e role of the androgen receptor (AR) in male sexual differentiation is revealed in part by the analys
179 an inherent sex identity and that, in birds, sexual differentiation is substantively cell autonomous.
180 A major advantage of the rat as a model of sexual differentiation is that treatment of neonatal fem
181 e most common process implicated in neuronal sexual differentiation, it is currently unknown how deve
182 hown that DOA kinase is essential for normal sexual differentiation, levels of both kinase isoforms a
184 y individuals do better if female; secondary sexual differentiation may be important for understandin
186 that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially reg
188 Estrogenic effects have been implicated in sexual differentiation of brain and behavior, in part by
191 us, Bax-dependent cell death is required for sexual differentiation of cell number, regardless of whe
193 (DSDs) are congenital anomalies that affect sexual differentiation of genitourinary organs and secon
195 anos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice,
196 ired for stress responses, reproduction, and sexual differentiation of male fetuses, exerts its activ
197 tal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspep
198 from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavi
199 sed whether GPR54 signaling is essential for sexual differentiation of other sexually dimorphic trait
200 hesis that hormones and genes play a role in sexual differentiation of partner preferences, as in the
202 se findings form the basis of a new model of sexual differentiation of the AVPV that may also apply t
203 o identify upstream pathways responsible for sexual differentiation of the AVPV, we used targeted apo
204 s of doublesex (dsxF and dsxM), that control sexual differentiation of the body, also contribute to s
205 in male rodents plays a significant role in sexual differentiation of the brain and adult behaviors.
207 xt discuss current data on the mechanisms of sexual differentiation of the brain and on sex differenc
208 on by sex steroids, timing of puberty onset, sexual differentiation of the brain and photoperiodic re
210 rmones undoubtedly play an important role in sexual differentiation of the brain, they are not the on
214 n exhibiting sex-different expression during sexual differentiation of the hypothalamic sexually dimo
219 related to their unique social organization, sexual differentiation of the prairie vole spinal cord d
225 s evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system ha
229 ed male mice as in WT males, indicating that sexual differentiation of this population of neurons is
230 ure to 17alpha-ethynylestradiol (EE2) during sexual differentiation of X. laevis were evaluated by us
232 ypothalamus (AVPV) to test the dependence of sexual differentiation on a functional ERalpha by compar
235 ology and introduce a major component of the sexual differentiation pathway in Plasmodium that may pr
239 al inhibition during the critical period for sexual differentiation prevented sex differences in micr
240 hophysiologic effects of androgens including sexual differentiation, prostate development, and cancer
241 ptor function is required for male embryonic sexual differentiation, pubertal development and the reg
243 have demonstrated previously that mammalian sexual differentiation requires both the GATA4 and FOG2
246 s, including a fundamental conserved role in sexual differentiation, species-specific morphology and
247 wide array of biological processes including sexual differentiation, spermatogenesis, and prostate ca
248 the twentieth century, the dominant model of sexual differentiation stated that genetic sex (XX versu
249 STE50, an S. cerevisiae protein required for sexual differentiation that we show can bind to STE11.
250 onads will develop as testes or ovaries; and sexual differentiation, the subsequent events that ultim
252 use forebrain that show opposite patterns of sexual differentiation: the principal nucleus of the bed
255 quivalent between XO and XX animals, causing sexual differentiation to be controlled by genes downstr
256 nt predisposition at the PvT and (ii) by the sexual differentiation trajectory established early in g
257 he PvT further indicate that embryos adopt a sexual differentiation trajectory many days prior to the
259 such as an antigen-coated surface, parasite sexual differentiation, virulence, and drug resistance,
260 in inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a
261 fferent splicing forms of Dsx in controlling sexual differentiation was present in the common ancesto
263 Specific environmental conditions trigger sexual differentiation, which leads to an internal progr
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。