戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 ellular syncytial formation is a hallmark of skeletal muscle differentiation.
2  redox homeostasis which is downregulated in skeletal muscle differentiation.
3  form normal ribs and sternum, and extent of skeletal muscle differentiation.
4 inesterase (AChE) expression observed during skeletal muscle differentiation.
5  MyoD and the expression of a late marker of skeletal muscle differentiation.
6  subunits and activation of MAPKs to repress skeletal muscle differentiation.
7 he MAPKs during the early and late stages of skeletal muscle differentiation.
8 implicated in the control of cell growth and skeletal muscle differentiation.
9 is required for myogenic gene expression and skeletal muscle differentiation.
10 miR-675-5p, both of which are induced during skeletal muscle differentiation.
11 s as an E3 ubiquitin ligase to repress human skeletal muscle differentiation.
12 ors, we investigated the function of AUF1 in skeletal muscle differentiation.
13 ion activity and function as an inhibitor of skeletal muscle differentiation.
14 um (K(+)) channels is a pivotal event during skeletal muscle differentiation.
15 sion and activity and consequently inhibited skeletal muscle differentiation.
16 esents a key molecular link between O(2) and skeletal muscle differentiation.
17  that negatively regulates mTOR activity and skeletal muscle differentiation.
18  represses slow fiber gene expression during skeletal muscle differentiation.
19 omoting slow fiber type specification during skeletal muscle differentiation.
20 cancer, which arrested during the process of skeletal muscle differentiation.
21 f the important signaling pathways linked to skeletal muscle differentiation.
22 tin cytoskeleton is a critical early step in skeletal muscle differentiation.
23 es gene expression throughout the program of skeletal muscle differentiation.
24  neoplasm of primitive mesenchyme exhibiting skeletal muscle differentiation.
25 thway that regulates myogenin expression and skeletal muscle differentiation.
26 NF-kappaB functions in myoblasts to modulate skeletal muscle differentiation.
27 s miRNAs that repress gene expression during skeletal muscle differentiation.
28  activation of genes involved in cardiac and skeletal muscle differentiation.
29 m C2C12 myoblasts by RNA interference blocks skeletal muscle differentiation.
30 e regulator of cardiomyocyte hypertrophy and skeletal muscle differentiation.
31 mily in myoblasts and that Mirk is active in skeletal muscle differentiation.
32  C2C12 myoblasts, a tissue culture model for skeletal muscle differentiation.
33 novel mTOR signaling mechanism essential for skeletal muscle differentiation.
34 is an aggressive pediatric cancer exhibiting skeletal-muscle differentiation.
35 n of a dominant-negative Set7 mutant impairs skeletal muscle differentiation, accompanied by a decrea
36 nstrate that Map4k4 is a novel suppressor of skeletal muscle differentiation, acting through a Myf5-d
37 x and ER exit sites takes place early during skeletal muscle differentiation and completely remodels
38 transcription factors are upregulated during skeletal muscle differentiation and cooperate with the M
39  Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vess
40 e integral in cardiac hypertrophy as well as skeletal muscle differentiation and fiber-type specifica
41 heart valve formation, vascular development, skeletal muscle differentiation and fiber-type switching
42 ors and a cell cycle inhibitor essential for skeletal muscle differentiation and for survival.
43 nstrate a novel role for EGLN3 in regulating skeletal muscle differentiation and gene expression.
44 gest that K(v)7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a
45 regulatory regions of genes expressed during skeletal muscle differentiation and initiates chromatin
46                    Depletion of 4.1R impairs skeletal muscle differentiation and is accompanied by a
47 anscription factor, is a potent repressor of skeletal muscle differentiation and is dysregulated in m
48                    miR-26a is induced during skeletal muscle differentiation and is predicted to targ
49             SRF is an essential regulator of skeletal muscle differentiation and numerous components
50 e up-regulated genes were mainly involved in skeletal muscle differentiation and proliferation, inclu
51 r suppressor protein (pRb) family both block skeletal muscle differentiation and promote cell cycle p
52  evidence for the requirement of miR-26a for skeletal muscle differentiation and regeneration in vivo
53  has a critical trans-regulatory function in skeletal muscle differentiation and regeneration that is
54 Thus, we examined the role of the H19 RNA in skeletal muscle differentiation and regeneration.
55 e we illustrate how these transcripts affect skeletal muscle differentiation and related disorders.
56 hat ectopic expression of cyclin D1 inhibits skeletal muscle differentiation and, conversely, that ex
57                     For example, Myod drives skeletal muscle differentiation, and Hand2 potentiates c
58 sion of utrophin (Utrn) is suppressed during skeletal muscle differentiation, and it is replaced at t
59 myogenin and that correct sternum formation, skeletal muscle differentiation, and viability each requ
60 nts that modulate chromatin structure during skeletal muscle differentiation are still poorly underst
61 uggesting intracellular responses regulating skeletal muscle differentiation are transduced by activa
62 ine methyltransferase Prmt5 was required for skeletal muscle differentiation at the early stages of m
63 letal Tmod (Sk-Tmod), expressed late in fast skeletal muscle differentiation, bind on overlapping sit
64    Overexpression of c-Ski/SnoN also induces skeletal muscle differentiation, but how c-Ski/SnoN func
65 tor-beta (TGF-beta) is a potent inhibitor of skeletal muscle differentiation, but the molecular mecha
66 ong been implicated in regulating vertebrate skeletal muscle differentiation, but their precise role(
67                   These are known to inhibit skeletal muscle differentiation by binding and blocking
68 ative cis-regulatory modules (CRMs) in human skeletal muscle differentiation by combining myogenic TF
69  vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual
70          Thus, it appears that regulation of skeletal muscle differentiation by FGFs requires only ac
71                 p38-gamma puts the brakes on skeletal muscle differentiation by promoting the associa
72 cyclin-cdk activity blocks the initiation of skeletal muscle differentiation by two distinct mechanis
73                 The mechanisms that regulate skeletal muscle differentiation, fiber type diversity an
74 nsferases are employed at different times of skeletal muscle differentiation for the purpose of facil
75                                       During skeletal muscle differentiation, GRIP-1 is localized to
76                                              Skeletal muscle differentiation has been shown to be dep
77 iptional regulation during the initiation of skeletal muscle differentiation; however, there is less
78          Thus, MyoD gene transfer can induce skeletal muscle differentiation in healing heart lesions
79 olin, and the GSK3beta inhibitor BIO induced skeletal muscle differentiation in human induced pluripo
80 dicate that cyclin D-cdk4 activity represses skeletal muscle differentiation in proliferating cells b
81  that N-cadherin- mediated adhesion enhances skeletal muscle differentiation in three-dimensional cel
82 achexia and has been demonstrated to inhibit skeletal muscle differentiation in vitro.
83                                              Skeletal muscle differentiation is a complex, highly coo
84                                              Skeletal muscle differentiation is controlled by associa
85                                              Skeletal muscle differentiation is controlled by interac
86 utations has been identified in which normal skeletal muscle differentiation is followed by a tissue-
87                                              Skeletal muscle differentiation is initiated by the tran
88                       The complex process of skeletal muscle differentiation is organized by the myog
89                                              Skeletal muscle differentiation is regulated by the basi
90 myosarcoma, a malignancy showing features of skeletal muscle differentiation, is the most common soft
91 ly expressed in muscle cells and serves as a skeletal muscle differentiation marker.
92 t pRb is required for the expression of late skeletal muscle differentiation markers and for the inhi
93                                              Skeletal muscle differentiation, maturation, and regener
94                                              Skeletal muscle differentiation, maturation, and regener
95                           Here we use both a skeletal muscle differentiation model and normal diploid
96 ugh a few research groups have used them for skeletal muscle differentiation, most were based on gene
97 the sternum developed normally and extensive skeletal muscle differentiation occurred.
98 f constitutive proteasomes, are critical for skeletal muscle differentiation of mouse C2C12 cells.
99                       Thus, we conclude that skeletal muscle differentiation of patient cells causes
100 nrecognized role for Myocd in repressing the skeletal muscle differentiation program and suggest that
101 blasts lacking pRb, MyoD induces an aberrant skeletal muscle differentiation program characterized by
102 ive in proliferating cells, can suppress the skeletal muscle differentiation program in proliferating
103 , MITR has minimal inhibitory effects on the skeletal muscle differentiation program.
104 f5, myogenin, and MRF4-can each activate the skeletal muscle-differentiation program in transfection
105 the genes that are central to the process of skeletal muscle differentiation remain in a transcriptio
106 rations, stress hormones may be important in skeletal muscle differentiation, repair and regeneration
107                                              Skeletal muscle differentiation requires a cascade of tr
108                                              Skeletal muscle differentiation requires precisely coord
109                                              Skeletal muscle differentiation requires the coordinated
110  dramatically up-regulated during smooth and skeletal muscle differentiation, respectively, and p40 c
111                               MyoD regulates skeletal muscle differentiation (SMD) and is essential f
112 y studies, bioartificial muscle engineering, skeletal muscle differentiation studies and for better u
113  the level of beta-catenin failed to promote skeletal muscle differentiation suggesting an adhesion-c
114                                       During skeletal muscle differentiation, the activation of some
115                                       During skeletal muscle differentiation, the actomyosin motor is
116                                       During skeletal muscle differentiation, the Akt2 but not Akt1 e
117                                       During skeletal muscle differentiation, the Golgi complex (GC)
118 l molecular axis, which functionally acts in skeletal muscle differentiation through the modulation o
119 e alternative splicing regulator nPTB during skeletal muscle differentiation to control a potential n
120  (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the express
121 ture system with reporters of early and late skeletal muscle differentiation, we examined the influen
122           To identify genes regulated during skeletal muscle differentiation, we have infected mouse
123 rly transcriptional targets of MyoD prior to skeletal muscle differentiation, we have undertaken a tr
124 s for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most diff
125 tory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repre
126 ranscriptional repressor of Myog, inhibiting skeletal muscle differentiation while activating SMC-spe

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。
 
Page Top