コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 f concentrated fatty acids esterified at the sn-2 position.
2 C18 FAs, palmitic acid was typically in the sn-2 position.
3 a-linolenic, or docosahexaenoic acid) in the sn-2 position.
4 n positions of PC, with a preference for the sn-2 position.
5 pids through PC acyl editing, largely at the sn-2 position.
6 ere synthesized with perdeuterated SA at the sn-2 position.
7 line with a preference for hydrolysis at the sn-2 position.
8 (5), 18:1Delta(5), and SA was present at the sn-2 position.
9 spholipid formation and was localized in the sn-2 position.
10 d head groups and acyl chains located at the sn-2 position.
11 40%, respectively, more arachidonate in the sn-2 position.
12 ere antigenic whether oxidized or not in the sn-2 position.
13 ocosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position.
14 and a N-(DNP)-8-amino-octanoyl group at the sn-2 position.
15 generated by a PLA with specificity for the sn-2 position.
16 ing mechanism that operates at both sn-1 and sn-2 positions.
17 ., the larger branched acyl chain) is in the sn-2 position, a dramatic increase in binding affinity i
19 analogs with a BODIPY-pentanoyl group at the sn-2 position and DNP linked to the amino head group.
20 s are cleaved by pPLAIIalpha at the sn-1 and sn-2 positions, and galactolipids, including those conta
21 on from fragment ions unique to the sn-1 and sn-2 positions, and the positions of carbon-carbon doubl
22 onalized phenyl groups at either the sn-1 or sn-2 position are consistent with the proposed binding m
24 ydrolyzes phospholipids at both the sn-1 and sn-2 positions, but prefers galactolipids to phospholipi
25 of PS-containing linoleic acid in either the sn-2 position (C(18:0)/C(18:2)) or in both sn-1 and sn-2
26 sition (C(18:0)/C(18:2)) or in both sn-1 and sn-2 positions (C(18:2)/C(18:2)), formed in the cytochro
27 holine (PC) substrate containing 20:4 in the sn-2 position compared with the wild-type enzyme, result
28 he presence of a diacylglycerol lipid, whose sn-2 position contains almost exclusively an C18:1 acyl
30 a higher proportion of palmitic acid in the sn-2 position decrease postprandial lipemia in healthy s
35 fatty acids are preferentially esterified in sn-2 position in hazelnut oil, while no significant pref
37 ances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, wh
39 r species, total fatty acids, and sn-1+3 and sn-2 positions in the two lipid pools are similar, excep
40 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that ha
41 cerophospholipids (SML) in which the sn-1 or sn-2 position is covalently attached to cholesterol and
43 se TAGs contained up to 40 mol % 10:0 in the sn-2 position, nearly double the amounts obtained from c
44 pholipids containing arachidonic acid at the sn-2 position occurs when a critical concentration of 's
45 ing AA from the stereospecifically numbered (sn) 2 position of phospholipids, and regional [3H]AA upt
46 lipase A2 (PLA2)-catalyzed hydrolysis at the sn-2 position of 1,2-dimyristoyl-sn-glycero-3-phosphocho
47 the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of
48 ncorporation of arachidonate, first into the sn-2 position of a preformed phosphatidylinositol (PI) m
49 Phospholipase A(2) (PLA(2)) hydrolyzes the sn-2 position of cell membrane phospholipids to release
50 l fatty acids were largely excluded from the sn-2 position of chloroplast galactolipids and seed tria
51 Delta6 desaturase utilised linoleate at the sn-2 position of exogenously supplied PtdCho presented t
54 of cell membranes that is esterified to the sn-2 position of glycerophospholipids and is released fr
59 lective release of arachidonic acid from the sn-2 position of membrane phospholipids and has been sug
61 in transferring acyl groups modified at the sn-2 position of PC to the sn-1 position of this molecul
62 ds were preferentially incorporated into the sn-2 position of PC, but the sn-1 position of de novo DA
63 e (LCAT), which is normally specific for the sn-2 position of phosphatidylcholine (PC), derives a sig
64 tes a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with pa
67 lective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a
68 ncorporated 20-[(3)H]HETE primarily into the sn-2 position of phospholipids through a coenzyme A-depe
75 ed, instead of saturated, fatty acids in the sn-2 position of the alkylacylglycerolipid component.
76 trate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and
79 Characterization of 5,6-trans-EET in the sn-2 position of the phospholipids was accomplished by h
81 C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acyla
82 tants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin
84 s a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulati
86 anoyl and octyl lipid chains at the sn-1 and sn-2 positions of the glycerol backbone and phosphonoino
89 of cell membranes that is esterified to the sn-2-position of glycerophospholipids and is released fr
91 ransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA su
92 - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences
93 ng alpha-phenylalkylidene side chains at the sn-2 position represent excellent scaffolds upon which t
94 ilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaur
96 son using PG with various acyl chains on the sn-2 position showed that oleate and linoleate were pref
97 rminal negatively charged carboxylate at the sn-2 position suffices to generate high binding affinity
98 hermore, analysis of acyl chains at sn-1 and sn-2 positions that accumulated in PC from S. foetida de
99 r, we found the fatty acid preference at the sn-2 position to be highly dependent upon substrate pres
100 beta) hydrolyzes glycerophospholipids at the sn-2-position to yield a free fatty acid and a 2-lysopho
101 mega 6, 20:5 omega 3, or 22:6 omega 3 at the sn-2 position were investigated in a matrix of dioleoylp
102 at the sn-1 position and arachidonate at the sn-2 position were similar (kapp = 0.04 min-1 at 22 degr
103 s that hydrolyze glycerophospholipids at the sn-2 position, which leads to the production of lipid me
104 tidylcholine (PC) esterified at the sn-1 and sn-2 positions, with alpha-eleostearic acid (9Z, 11E, 13
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。