戻る
「早戻しボタン」を押すと検索画面に戻ります。

今後説明を表示しない

[OK]

コーパス検索結果 (1語後でソート)

通し番号をクリックするとPubMedの該当ページを表示します
1 to the functional assembly of the human tRNA splicing endonuclease.
2 ircularization site is processed by the tRNA splicing endonuclease.
3 al of introns catalyzed in yeast by the tRNA splicing endonuclease.
4 ation and characterization of the human tRNA splicing endonuclease.
5 ty from that of previously characterized RNA splicing endonucleases.
6     Three strictly conserved residues of the splicing endonuclease, a histidine, a lysine, and a tyro
7 ition and cleavage, is performed by the tRNA-splicing endonuclease, a tetrameric enzyme composed of t
8 l BHB constructs showed that the N. equitans splicing endonuclease accepts a broader range of substra
9 ite of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity
10 lytically active ribonucleoprotein (RNP) has splicing, endonuclease, and reverse transcriptase activi
11           Here, we show that the N. equitans splicing endonuclease cleaves tRNA precursors containing
12                                      The RNA splicing endonuclease cleaves two phosphodiester bonds w
13 re performed on the RNA structures both in a splicing endonuclease complex and in the aqueous solutio
14  TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex.
15                                  N. equitans splicing endonuclease comprises the catalytic subunit (N
16 r results demonstrate that the eucaryal tRNA splicing endonuclease contains two functionally independ
17 d a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specific
18  hallmark structure required by the archaeal splicing endonuclease for recognition and excision of al
19 olution of 2.85 angstroms the structure of a splicing endonuclease from Archaeglobus fulgidus bound w
20                                          The splicing endonuclease from Archaeoglobus fulgidus (AF) b
21 rized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfatari
22 he previously determined homotetrameric tRNA splicing endonuclease from Methanococcus jannaschii (MJ)
23                      The recently identified splicing endonuclease homolog from Sulfolobus solfataric
24      Different from previously characterized splicing endonucleases in Archaea, the splicing endonucl
25                                     The tRNA splicing endonuclease is a highly evolutionarily conserv
26 uggest an intriguing hypothesis in which the splicing endonuclease is an intermediate in the transiti
27                           In yeast, the tRNA splicing endonuclease is responsible for identification
28                                      The RNA splicing endonuclease is responsible for recognition and
29 found in the gene encoding the archaeal tRNA splicing endonuclease of H. volcanii and in other Archae
30 -157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possess
31 tured known 5'-OH fragments produced by tRNA Splicing Endonuclease (SEN) during processing of intron-
32 from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex).
33     We demonstrate here that an inactive RNA splicing endonuclease subunit can be switched "on" solel
34 ort the solution structure of the human tRNA splicing endonuclease subunit HsSen15.
35 recently identified (alphabeta)(2) family of splicing endonucleases that require two different subuni
36 catalysis of pre-tRNA by the eukaryotic tRNA-splicing endonuclease therefore requires a previously un
37 us (AF) belongs to the homodimeric family of splicing endonucleases, thought to have evolved from the
38  tRNA precursors involves cleavage by a tRNA splicing endonuclease to yield tRNA 3'-halves beginning
39  to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pr
40  requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalyti
41  makes it well-suited for attack by archaeal splicing endonucleases, which are symmetric dimers.
42 d two avatar (av) or model pre-tRNAs and two splicing endonucleases with distinct mechanisms of recog

WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。