コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 lution of YiaK alone and in complex with NAD-tartrate.
2 d in AMTPS formed by Triton X-114 and sodium tartrate.
3 anic host selectivity to preferentially bind tartrate.
4 ic charges and can be mimicked by suramin or tartrate.
5 ith higher specificity and potency than L(+)-tartrate.
6 presence of the competitive inhibitor, meso-tartrate.
7 rats trained to discriminate saline from LSD tartrate (0.08 mg/kg) and for the ability to displace [3
13 attempted with a moderate dose of metoprolol tartrate, a beta-1-blocker that results in lesser clinic
14 s, we investigated the effect of varenicline tartrate, a relatively specific alpha4beta2 partial agon
15 s endogenously to the proximal region of the tartrate acid phosphatase (TRAP) gene promoter and suppr
20 changes in phenylalanine, dehydroascorbate, tartrate and formate were consistent with a higher deman
25 omplexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers wi
26 H,3H)-quinazoli nedione tartrate (ketanserin tartrate), and the non-selective 5-HT receptor agents, 2
28 (N-hydroxysuccinimide ester), disuccinimidyl tartrate, and dithiobis(succinimidyl) propionate, develo
30 caris suum will utilize L-aspartate, (2S,3R)-tartrate, and meso-tartrate as substrates with V/K value
32 a C2-symmetric starting material, diethyl D-tartrate, and took advantage of a relay of diastereosele
33 Corey stien reagent, the Roush allylboronate tartrates, and the secondary amine Diels-Alder catalysts
35 In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable
37 use of ascorbic acid and antimony potassium tartrate as reducing agents (as used in the colorimetric
38 lize L-aspartate, (2S,3R)-tartrate, and meso-tartrate as substrates with V/K values 10(-4)-10(-5) wit
41 dideoxyguanosine-5'-triphosphate, MnCl2, and tartrate, but their quaternary structure did not conform
42 dized by addition of dioxygen and a titanium tartrate catalyst to give epoxy alcohols with excellent
47 apraclonidine hydrochloride, and brimonidine tartrate constitute the three topical alpha agonists tha
49 hesized from l-dimethyl-2,3-O-isopropylidene-tartrate, d-dimethyl-2,3-O-isopropylidene-tartrate, and
51 exposed to nicotine (6 mg kg(-1) of nicotine tartrate daily) or saline with an osmotic mini-pump impl
53 late racemase, l-fuconate dehydratase, and d-tartrate dehydratase, the active site of TalrD/GalrD con
54 tes and inhibitors to different complexes of tartrate dehydrogenase (TDH) from Pseudomonas putida was
56 ive decarboxylation of D-malate catalyzed by tartrate dehydrogenase has been analyzed by transient-st
57 drogenase, homoisocitrate dehydrogenase, and tartrate dehydrogenase, which have an (R)-hydroxyacid su
60 allylboronates bearing the readily available tartrate derivative were obtained via sigmatropic rearra
61 Conversion of the adduct to a mixture of tartrate-derived ketals followed by separation of the di
62 10-15-membered rings was achieved by using a tartrate-derived linker to attach ene and yne subunits.
63 MeOH/H(2)O, revealed that the antimony(III)-tartrate dianion associates to solvent reaction products
65 e administered nicotine bitartrate or sodium tartrate either during adolescence (p29-43) or adulthood
67 as well as thioether 8 were synthesized from tartrates employing Ley's "BDA" and "Dispoke" methodolog
68 s for the allylboration reaction between the tartrate ester and tartramide modified allylboronates an
69 ealed that the predominant species in Ti/PEG tartrate ester mixtures is a distinct 2:1 Ti-ligand comp
71 s into the recently disputed report that PEG tartrate esters can reverse the enantioselectivity of th
72 e investigated by administering (-)-nicotine tartrate for 5 days either continuously in doses of 5.01
74 gential flow filtration (TFF-DB) or glycerol tartrate gradient sedimentation (GT-DB) constitute 92% o
75 articles sedimented abnormally in a glycerol-tartrate gradient, indicating that the structure of the
76 more, GABA increased the potency of ammonium tartrate in enhancing [3H]flunitrazepam binding by 63%.
77 ctrometry (ESI-MS) analysis of antimony(III)-tartrate in frequently used solvent systems, ACN/H(2)O a
78 he superiority of carvedilol over metoprolol tartrate in one clinical trial is demonstrated, and mult
80 that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that
82 de, sodium arsenite, and potassium antimonyl tartrate (in order of effectiveness), the same inducers
83 and crystal structures of 11 alkaline earth tartrates, including an unusual I(3)O(0) framework, [Ba(
87 n an achiral gold surface in the presence of tartrate ion in the deposition solution, the chirality o
88 of 46 acid sugars and discovered that only d-tartrate is dehydrated, yielding oxaloacetate as product
89 e Mitsunobu reaction in which catalytic zinc tartrate is used to enhance the nucleophilicity of the t
90 perdinyl]ethyl]-2,4(1H,3H)-quinazoli nedione tartrate (ketanserin tartrate), and the non-selective 5-
93 ues of about 6.3 and 8.3, while that for V/K(tartrate) (measured from pH 7.5 to pH 9) exhibits a pK(a
96 n, we monitor the crystallization of lithium tartrate MOFs, observing the successive crystallization
100 y subjects was treated with 0.2% brimonidine tartrate ophthalmic solution to induce pupil size reduct
101 the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inh
103 emotherapy with trivalent potassium antimony tartrate (PAT) and, more importantly, pentavalent antimo
106 e small orally, available molecule, Posiphen tartrate (Posiphen), lowers secreted (s) amyloid-beta pr
107 gamma-aminobutyric acid A receptor, zolpidem tartrate presents a potential treatment mechanism for ot
108 y, coupled with the remarkable efficiency of tartrate production from glyoxylate, merits consideratio
109 ous crystallographic studies compiled on the tartrate-rat prostatic acid phosphatase binary complex e
110 sually separated into tartrate-resistant and tartrate-refractory, which is reported as the prostatic
111 sphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclast
112 Meanwhile, CLA significantly reduced femur tartrate resistant acid phosphatase (TRAP) activity, sug
114 en c-src proto-oncogene from the promoter of tartrate resistant acid phosphatase (TRAP), a gene that
118 of nuclear factor-kappaB ligand (RANKL) and tartrate resistant acid phosphatase were significantly d
121 The isolated approximately 28-kDa enzyme was tartrate resistant and displayed narrow substrate specif
123 urface membrane phospho-monoesterase, i.e. a tartrate-resistant acid phosphatase (Cl MAcP) was also f
125 ic differentiation as evidenced by increased tartrate-resistant acid phosphatase (TRAP) activity and
126 the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity prod
127 The inhibition of osteoclastogenesis and tartrate-resistant acid phosphatase (TRAP) activity was
128 ounterparts they are larger, fail to express tartrate-resistant acid phosphatase (TRAP) activity, and
129 e colocalization of messenger RNA (mRNA) for tartrate-resistant acid phosphatase (TRAP) and cathepsin
130 toplasmic, calcineurin-dependent 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin
131 ere performed on media and cell lysates, and tartrate-resistant acid phosphatase (TRAP) and mRNA dete
133 -dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a
134 d alkaline phosphatase (AP) for osteoblasts; tartrate-resistant acid phosphatase (TRAP) for osteoclas
135 ast differentiation, plays a pivotal role in tartrate-resistant acid phosphatase (TRAP) gene expressi
136 a novel CD gene regulated by the osteoclast tartrate-resistant acid phosphatase (TRAP) gene promoter
137 e sialoprotein (BSP), osteocalcin (OCN), and tartrate-resistant acid phosphatase (TRAP) immunohistoch
139 ecessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclast
146 was analyzed by immunohistochemistry, using tartrate-resistant acid phosphatase (TRAP) staining to i
148 nalysis and immunohistochemical detection of tartrate-resistant acid phosphatase (TRAP) were also per
149 B ligand (RANKL), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase (TRAP) were assessed
151 a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)(+) osteoclast
152 appaB ligand (RANKL), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and activate
153 eptor activator of NK-kappaB ligand (RANKL), tartrate-resistant acid phosphatase (TRAP), and osteocla
154 ocollagen I carboxy-terminal propeptide, and tartrate-resistant acid phosphatase (TRAP), and urinary
155 on of matrix metallopeptidase 13 (MMP13) and tartrate-resistant acid phosphatase (TRAP), leading to a
159 sence of IL-4, we detected the appearance of tartrate-resistant acid phosphatase (TRAP)-negative mult
160 st/periodontal ligament cells displayed more tartrate-resistant acid phosphatase (TRAP)-positive cell
161 nificantly lower level of bone loss and less tartrate-resistant acid phosphatase (TRAP)-positive cell
162 igature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cell
163 counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cell
164 confirmed the decreased bone mass, increased tartrate-resistant acid phosphatase (TRAP)-positive cell
165 NF-kappaB ligand formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cell
167 matoxylin and eosin, immunohistochemical, or tartrate-resistant acid phosphatase (TRAP)-stained secti
170 otegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentrati
172 -cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with recept
174 serum bone alkaline phosphatase (B-ALP) and tartrate-resistant acid phosphatase 5b (TRAP-5b), and ca
175 this was accompanied by an increase in serum Tartrate-resistant acid phosphatase 5b (TRAP5b) levels.
177 rocollagen type-1 N-terminal propeptide, and tartrate-resistant acid phosphatase 5b were associated w
179 procollagen type-1 N-terminal propeptide, or tartrate-resistant acid phosphatase 5b; these values cor
180 ophospholipase A, and tartrate-sensitive and tartrate-resistant acid phosphatase activities and influ
181 d by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for
182 eveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interfe
184 factor I concentrations and increased serum tartrate-resistant acid phosphatase and 25-hydroxyvitami
185 ive induction of OCL-specific genes, such as tartrate-resistant acid phosphatase and immunoreceptor O
187 e, multinucleated osteoclasts that expressed tartrate-resistant acid phosphatase and were capable of
189 enerated with a transgenic construct using a tartrate-resistant acid phosphatase exon 1C promoter to
190 could collaborate with MITF to activate the tartrate-resistant acid phosphatase gene promoter depend
191 lammation were assessed by histomorphometry, tartrate-resistant acid phosphatase histoenzymology, and
192 eptor type 4, nuclear factor kappa beta, and tartrate-resistant acid phosphatase immunostaining.
194 proximately 5% of the mononuclear cells were tartrate-resistant acid phosphatase positive, and these
195 specimens contained MNCs that were intensely tartrate-resistant acid phosphatase positive; approximat
198 and function were assessed via quantitative tartrate-resistant acid phosphatase staining and degrada
200 Mmp-2, and Mmp-14 were expressed widely, and tartrate-resistant acid phosphatase staining notably was
201 ysis, microcomputed tomography analysis, and tartrate-resistant acid phosphatase staining revealed re
203 leated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regula
205 human preosteoclastic cells was assessed by tartrate-resistant acid phosphatase staining, whereas th
209 PBMC differentiation to OCs was confirmed by tartrate-resistant acid phosphatase staining; bone resor
210 mouse tails, using hematoxylin and eosin and tartrate-resistant acid phosphatase to confirm the prese
211 received Scl-AbI, although levels of type 5b tartrate-resistant acid phosphatase were significantly l
213 xpress the purple, band 5 isozyme (Acp 5) of tartrate-resistant acid phosphatase, a binuclear metallo
214 ing matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphatase, and carbonic anhydr
215 ure, downregulation of the HCL markers CD25, tartrate-resistant acid phosphatase, and cyclin D1, smoo
216 OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of t
217 m the center of the lesion, were stained for tartrate-resistant acid phosphatase, and histomorphometr
218 ls, expression of receptors for AGEs (RAGE), tartrate-resistant acid phosphatase, and proliferating c
219 expression of the receptor for AGEs (RAGE), tartrate-resistant acid phosphatase, and proliferating c
220 line phosphatase, bone alkaline phosphatase, tartrate-resistant acid phosphatase, and urinary cross-l
221 ophathalmia-associated transcription factor, tartrate-resistant acid phosphatase, cathepsin K, and be
222 gulate calcitonin receptor, but they express tartrate-resistant acid phosphatase, cathepsin K, and be
224 crophage marker CD11b, the osteoclast marker tartrate-resistant acid phosphatase, or carbonic anhydra
226 ssenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs
227 ha tumors associated with significantly more tartrate-resistant acid phosphatase-positive (TRAP+) ost
228 ns, serum interleukin (IL)-1beta levels, and tartrate-resistant acid phosphatase-positive (TRAP+) ost
229 y features of the osteoclast: multinucleated tartrate-resistant acid phosphatase-positive cell format
230 lasts as the number of pits produced by each tartrate-resistant acid phosphatase-positive cell is red
233 wer maturation into osteoclasts with reduced tartrate-resistant acid phosphatase-positive cells and d
235 ion and maintenance of large multinucleated, tartrate-resistant acid phosphatase-positive cells.
237 ion were evaluated by counting the number of tartrate-resistant acid phosphatase-positive multinuclea
238 x metalloproteinase 9, and the generation of tartrate-resistant acid phosphatase-positive multinuclea
239 cent to and distal from pannus invasion, and tartrate-resistant acid phosphatase-positive multinuclea
240 (C453S) significantly enhanced the number of tartrate-resistant acid phosphatase-positive multinuclea
241 GM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinuclea
242 teoclast cell fusion, forming multinucleated tartrate-resistant acid phosphatase-positive osteoclast-
243 egenerative cell lines reduced the number of tartrate-resistant acid phosphatase-positive osteoclast-
244 ysis was characterized by reduced numbers of tartrate-resistant acid phosphatase-positive osteoclasts
246 ells in vitro, as evidenced by a decrease in tartrate-resistant acid phosphatase-positive osteoclasts
247 yelomonocytic precursors into multinucleated tartrate-resistant acid phosphatase-positive osteoclasts
249 or induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteocla
250 -29b, or -29c diminished formation of TRAP (tartrate-resistant acid phosphatase-positive) multinucle
259 xacin; V-ATPase, vacuolar H(+)-ATPase; TRAP, tartrate-resistant acid phosphatase; alphaMEM D10, minim
260 eated with aPDT exhibited reduced numbers of tartrate-resistant acid-phosphatase-positive cells and m
261 es based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells a
262 inhibiting Acps, F. tularensis Acp (AcpA) is tartrate-resistant and has broad substrate specificity.
263 in the blood serum is usually separated into tartrate-resistant and tartrate-refractory, which is rep
264 vely expresses a unique externally oriented, tartrate-resistant, acid phosphatase on its surface memb
266 l)-tropane-2beta-carboxylic acid methylester tartrate (RTI-55) whole-cell binding is increased by NEC
267 2-ylmethyl)-2-hydroxy-6-methoxybenzamide (+)-tartrate salt (raclopride; 0, 0.2, or 0.4 mg/kg) on the
268 ations involve resolution-crystallization of tartrate salt 6 followed by a one-pot procedure for the
270 A, phospholipase C, lysophospholipase A, and tartrate-sensitive and tartrate-resistant acid phosphata
271 ells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broad
272 itol) and its enantiomer (derived from l-(+)-tartrate) serve as key starting materials, which are ela
278 periments of Rochelle salt (sodium potassium tartrate), the protein lysozyme, and has been employed f
279 e has higher selectivity for citrate over DL-tartrate, the formation of the aptamer:receptor complex
283 ate kinase and that the serine cycle and the tartrate utilization pathway share a series of reactions
285 omplexed with the competitive inhibitor l(+)-tartrate was solved using single-wavelength anomalous di
287 nding of the bis(alpha-hydroxycarbolxylate), tartrate, was assessed and compared to the corresponding
288 3 hydroxyl group on the D(-)-stereoisomer of tartrate, which does not significantly inhibit prostatic
290 the effectiveness of intravenous vinorelbine tartrate with intravenous fluorouracil and leucovorin (5
291 is degraded via L-idonate to L-threarate (L-tartrate), with the latter arising from carbons 1-4 of a
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。