コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 ences were observed for the femoral neck and trochanter.
2 uscles and the bursal complex of the greater trochanter.
3 on were related to the facets of the greater trochanter.
4 ine curving around the posterior part of the trochanter.
5 nd at the femoral neck, Ward's triangle, and trochanter.
6 ter, P<0.001), and 10.8 percent lower at the trochanter (0.66+/-0.11 vs. 0.74+/-0.08 g per square cen
7 GPa vs 3.86-4.47 GPa; P = .006-.007; greater trochanter, 0.65-1.21 GPa vs 1.96-2.62 GPa; P = .01-.02)
8 .1 %), femoral neck (1.6% vs -1.2%), femoral trochanter (3.3% vs -0.7%), and midshaft of the radius (
9 , 12.0 to 15.5 percent), 10.3 percent at the trochanter (95 percent confidence interval, 8.1 to 12.4
10 fractures to identify those below the lesser trochanter and above the distal metaphyseal flare (subtr
11 of separate fractures involving the greater trochanter and crossing the midline of the femur in the
13 t that it encompasses different joints (coxa-trochanter and femur-tibia), and in this species we also
14 greater trochanter, medially oriented lesser trochanter and presence of third trochanter) are also pr
19 imal femur (femoral neck, Ward triangle, and trochanter) and lumbar spine by using dual-photon absorp
20 n the lumbar spine, 2.1+/-0.6 percent in the trochanter, and 1.8+/-0.4 percent in the total hip, and
22 osterior spine, lateral spine, femoral neck, trochanter, and total body were 4.9% (0.6%) (P<.001), 4.
23 d prevented bone loss from the femoral neck, trochanter, and total body, despite severe estrogen defi
24 -body, lumbar spine (LS), femoral neck (FN), trochanter, and Ward's triangle (WT) bone mineral measur
25 nted lesser trochanter and presence of third trochanter) are also present in earlier Miocene apes.
26 bone mineral density in the lumbar spine and trochanter at a rate of 0.72% (P = 0.005) and 0.85% (P =
27 bone mineral density in the lumbar spine and trochanter at a rate of 2.0% and 0.9% per year, respecti
28 ene and lutein+zeaxanthin with 4-y change in trochanter BMD in men (P for trend = 0.0005, 0.02, 0.009
30 (L2-L4), femoral neck, Ward's triangle, and trochanter, both before and after adjustment for the eff
31 eline at the lumbar spine, femoral neck, and trochanter by 1% to 4% and in the total body by 0.3% to
32 , -5.0% to -4.0%) and a 2.4% decrease at the trochanter (CI, -2.7% to -2.1%) (P < 0.001 for both chan
34 d sequentially moved past those on the other trochanter during the preparatory cocking and the propul
35 /- 0.038 g/cm2 and 3 +/- 2 g, respectively), trochanter (DXAdiff = 0.100 +/- 0.044 g/cm2 and 1.7 +/-
37 mineral content (BMC) in the head, neck, and trochanter from CT findings and pixel distribution param
38 umbar spine (LS), femoral neck (FN), femoral trochanter (FT), and femoral Wards (FW) were calculated.
39 bone mineral density in the lumbar spine and trochanter in patients with rheumatoid arthritis who wer
40 erior and lateral) and proximal femur (neck, trochanter, intertrochanter, Ward's triangle, and total
41 ergy x-ray absorptiometry (DXA) at the neck, trochanter, intertrochanter, Ward's triangle, and total
43 f interest: femoral neck, the Ward triangle, trochanter, intertrochanteric region, and total proximal
44 917 (0.908, 0.926), P for trend = 0.02], the trochanter [lowest-to-highest tertiles (95% CI): 0.811 (
45 s (for example, laterally protruding greater trochanter, medially oriented lesser trochanter and pres
46 ibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions
48 n bone density at both the total hip and the trochanter of 0.00044 g per square centimeter per puff p
49 gned to the intraosseous groups, the greater trochanter of the left proximal femur was exposed and th
50 , 1.8% to 4.2%) higher, respectively, at the trochanter (P < 0.001 for both treatment comparisons) th
53 bra (P < 0.05), femoral neck (P < 0.01), and trochanter (P < 0.01) compared with CON (-0.99% and -2.2
54 y at 48 weeks in the lumbar spine (P<0.001), trochanter (P = 0.003), total hip (P=0.005), and trabecu
55 ineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis
57 was significantly correlated with BMD of the trochanter (r =- 0.27), Ward's triangle (r = -0.26), and
59 r-posterior and lateral spine, femoral neck, trochanter, radial shaft, and total body at 12 months of
62 ignment among cases of ipsilateral hip pain, trochanter tenderness, hip pain or tenderness, and total
63 e mineral density (BMD) of the femoral neck, trochanter, total femur, and lumbar spine (L2-L4) were m
64 e modified AHA-DLS, BMD at the femoral neck, trochanter, total hip, and lumbar spine (L2-L4) was asso
65 e mineral density (BMD) at the femoral neck, trochanter, total hip, and lumbar spine (L2-L4) was meas
66 e odds for osteoporosis or osteopenia at the trochanter, total hip, and lumbar spine (L2-L4) were low
67 (P < .01) at the lumbar spine, femoral neck, trochanter, Ward triangle, intertrochanteric region, fem
68 d at the proximal right femur (femoral neck, trochanter, Ward's area) with a dual-photon absorptiomet
69 al density (BMD) of the spine, femoral neck, trochanter, Ward's triangle, radius, and total body and
70 al oblique planes) MR imaging of the greater trochanter was performed in 10 cadaveric hips and 12 hip
71 s divided by signal intensity of the greater trochanter) x 100, was measured in 182 hips of 91 patien
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。