コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 t of myofibers during the development of the ventricular septum.
2 enefit from ablation at the left side of the ventricular septum.
3 d for formation of the aortico-pulmonary and ventricular septum.
4 a history of inferior MI involving the left ventricular septum.
5 the affected heart valves and the membranous ventricular septum.
6 d in abnormal development of the OFT and the ventricular septum.
7 cular junction and the subendocardium of the ventricular septum.
8 posterior right ventricle free wall and the ventricular septum.
9 transposition of great arteries with intact ventricular septum.
10 in43 developed pulmonary atresia with intact ventricular septum.
11 ped to the basal aspect of the superior left ventricular septum.
12 val, 49.9 to 61.7); pulmonary atresia intact ventricular septum, 55.7% (95% confidence interval, 45.8
13 transposition of great arteries with intact ventricular septum, 7.8%; 2) paternal anesthesia in tetr
14 ients (71 with pulmonary atresia with intact ventricular septum and 28 with virtual atresia) underwen
15 at 26 centers, 480 (62%) for TGA with intact ventricular septum and 298 (38%) for TGA with ventricula
16 in the outer layers and on the crest of the ventricular septum and is prominent on the mesenchymal c
17 y that included all cases of TGA with intact ventricular septum and TGA with ventricular septal defec
18 substantial contribution to myocytes in the ventricular septum and the atrial and ventricular walls.
19 atients with pulmonary atresia and an intact ventricular septum and to obtain follow-up information o
20 t, 5.3% for pulmonary atresia with an intact ventricular septum, and 6.4% for pulmonary atresia with
21 anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malforme
22 redundant role in closure of the palate and ventricular septum, and in the correct positioning of th
24 s of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expr
26 ascular defects affecting the outflow tract, ventricular septum, atrioventricular cushions, ventricul
29 left ventricular apex cells and in most left ventricular septum cells, whereas Ito,s is identified ex
31 Patients with pulmonary atresia with intact ventricular septum deemed suitable for RV decompression
32 some Agtr1a-/-; Agtr1b-/- mice have a large ventricular septum defect, suggesting that another recep
33 retroesophageal right subclavian artery, and ventricular septum defect, which resemble congenital hea
34 incidental finding revealed before closing a ventricular septum defect; - 1 patient during follow-up
35 1 or its receptors, Cxcr4 and Cxcr7, exhibit ventricular septum defects, raising the possibility that
36 asic action potentials (MAPs) from the right ventricular septum during balloon occlusion of the left
38 ce in T(SV) between the RV free wall and the ventricular septum, >2 SD above the mean value for contr
39 hrombosis were pulmonary atresia with intact ventricular septum (hazard ratio [HR]: 3.64, 95% confide
40 ), with additional target sites at the right ventricular septum in 2 patients (22%) and at the epicar
43 cn1 also results in delayed formation of the ventricular septum in the embryo and persistent ostium p
44 lls were found at the site of closure of the ventricular septum, in the wall of the pulmonary infundi
47 lly via its reciprocal, T2*) measured in the ventricular septum is used to assess cardiac iron, but i
50 nfined to the basal LV, most commonly in the ventricular septum (n=21) or posterior LV free wall (n=4
51 egral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and
52 underwent bare-metal stent placement in the ventricular septum or subvalvar systemic outflow tract,
53 r, intraoperative, or hybrid stenting of the ventricular septum or systemic outflow tract is feasible
54 ified who underwent ASO for dTGA with intact ventricular septum or ventricular septal defect (VSD), i
56 erforation for pulmonary atresia with intact ventricular septum (PAIVS) 21 years after the first proc
57 f fetuses with pulmonary atresia with intact ventricular septum (PAIVS) and/or critical pulmonary ste
58 e incidence of pulmonary atresia with intact ventricular septum (PAIVS) at birth, the impact of fetal
59 variability in pulmonary atresia with intact ventricular septum (PAIVS) within a population-based stu
60 ein and, after positioning against the right ventricular septum (RVS) using a preshaped guiding cathe
62 eft heart syndrome, pulmonary atresia intact ventricular septum, single ventricle, and tricuspid atre
64 y cardiac diagnoses included TGA with intact ventricular septum (TGA/IVS, n = 79, 63%), TGA with vent
65 llagen network in transmural sections of the ventricular septum (thickness 17 to 40 mm, mean 25 mm) i
66 al than basal extent) was created within the ventricular septum to papillary muscle level; also, in 1
69 ompression for pulmonary atresia with intact ventricular septum were included from 4 pediatric center
70 ior LV free wall and the contiguous anterior ventricular septum were the most commonly hypertrophied
71 ted in the midline of the ventral aspect and ventricular septum, which are vessel populations primari
72 oalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be th
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。