コーパス検索結果 (1語後でソート)
通し番号をクリックするとPubMedの該当ページを表示します
1 than IgA(+/+) mice (13 vs 75% survival after virus challenge).
2 r homologous or, in some cases, heterologous virus challenge.
3 course of ST-246 and survive lethal vaccinia virus challenge.
4 d its durability against heterosubtypic H5N1 virus challenge.
5 ntibodies and protect mice against influenza virus challenge.
6 and the absence of viremia in pigs following virus challenge.
7 from the nasal cavity in all pigs after live virus challenge.
8 re measured at enrollment and again prior to virus challenge.
9 ould these mice inhibit RSV replication upon virus challenge.
10 dy was able to protect mice in a lethal H2N2 virus challenge.
11 rotection to mice against a lethal influenza virus challenge.
12 ing antibody titers and survival rates after virus challenge.
13 ation retain the ability to respond to local virus challenge.
14 against a highly pathogenic avian influenza virus challenge.
15 ponse, and incomplete protection from p-H1N1 virus challenge.
16 ociated with complete protection from p-H1N1 virus challenge.
17 subsequent virulent simian immunodeficiency virus challenge.
18 ainst a heterologous simian immunodeficiency virus challenge.
19 cted mice from a lethal recombinant vaccinia virus challenge.
20 rosubtypes protected against lethal CA/E3/09 virus challenge.
21 d L1R were protected against lethal vaccinia virus challenge.
22 ted neutralizing antibody response following virus challenge.
23 ng the potential for rapid mobilization upon virus challenge.
24 ion against the heterologous avian influenza virus challenge.
25 e and ferrets from homologous wild-type (wt) virus challenge.
26 are required based on the route of vaccinia virus challenge.
27 y heightened vascular permeability following virus challenge.
28 complete protection against lethal vaccinia virus challenge.
29 ry CD8(+) T cells to the lung airways during virus challenge.
30 cted mice against a lethal systemic vaccinia virus challenge.
31 boosted as a recall response after monkeypox virus challenge.
32 on and the rapid kinetics of expansion after virus challenge.
33 nses and providing protection against lethal virus challenge.
34 ver survived and were readily recalled after virus challenge.
35 ntranasal route of a lethal dose of vaccinia virus challenge.
36 sponses, which were reactivated rapidly upon virus challenge.
37 100% protection from disease after virulent virus challenge.
38 dy response or to provide protection against virus challenge.
39 mplete protection when administered prior to virus challenge.
40 2 genome copies in dorsal root ganglia after virus challenge.
41 st resistant transgenic plant lines prior to virus challenge.
42 h the levels of Gag-specific immunity before virus challenge.
43 mice and ferrets from lethal H5N1 homologous virus challenge.
44 at the site of infection following influenza virus challenge.
45 ection from detectable infection by virulent virus challenge.
46 d CD8+ memory T cells can confer immunity to virus challenge.
47 production of infectious virus after a live-virus challenge.
48 d was able to protect mice against influenza virus challenge.
49 is and interstitial pneumonitis after a live-virus challenge.
50 protected adult AG129 mice against lethal D1 virus challenge.
51 protects guinea pigs from lethal Ebola Zaire virus challenge.
52 rferon were produced by CD4(+) T cells after virus challenge.
53 e recombinant virus but only against mucosal virus challenge.
54 ogression following a highly pathogenic AIDS virus challenge.
55 sue virus titers observed on day 5 post-H5N1 virus challenge.
56 rotected unvaccinated mice from lethal Ebola virus challenge.
57 mitted systemically in response to localized virus challenge.
58 veral criteria, including protection against virus challenge.
59 re than 50% of the control fish succumbed to virus challenge.
60 e-VLP were protected against homologous H1N1 virus challenge.
61 ) and develop tumors following radiation and virus challenge.
62 CTLp in mice against cross-strain influenza virus challenge.
63 n and mortality following a lethal influenza virus challenge.
64 tes more rapid recovery after heterosubtypic virus challenge.
65 nd protected chickens against wild-type H5N1 virus challenge.
66 nea pigs from lethal disease when given post-virus challenge.
67 ection or hepatitis during 2 years following virus challenge.
68 elaboration measured either 6 or 24 h after virus challenge.
69 cilitate virus clearance upon heterosubtypic virus challenge.
70 iding for at least a month after the initial virus challenge.
71 ces can elicit protection against parenteral virus challenge.
72 ed some evidence of infection at the site of virus challenge.
73 ounts for the increased resistance to lethal virus challenge.
74 de protective host immunity against a lethal virus challenge.
75 provided complete protection from MDCK-grown virus challenge.
76 enic and effective in inducing resistance to virus challenge.
77 ty to homologous or heterologous RSSE or CEE virus challenge.
78 mice and their efficacy against lethal Ebola virus challenge.
79 enge but did not protect against intravenous virus challenge.
80 utralizing antibodies and protection against virus challenge.
81 he rabbits were completely protected against virus challenge.
82 iated protective responses against influenza virus challenge.
83 nt to mediate protection against respiratory virus challenge.
84 fornia/07/2009, protects mice against lethal virus challenge.
85 re to ATCV-1 in vitro for up to 72 h after a virus challenge.
86 n-human primates against viraemia after Zika virus challenge.
87 highly susceptible to secondary heterologous virus challenge.
88 systemic disease and encephalitis after H5N1 virus challenge.
89 stem were protected against lethal influenza virus challenge.
90 cell immunity against heterologous influenza virus challenge.
91 48, or 72 hours after A/Anhui/1/2013 (H7N9) virus challenge.
92 ow and conferred protective immunity against virus challenge.
93 uited regulatory cells and neutrophils after virus challenge.
94 e amplification observed following influenza virus challenge.
95 e given a lethal western equine encephalitis virus challenge.
96 rred protection against homologous wild-type virus challenge.
97 to homosubtypic, as well as heterosubtypic, virus challenge.
98 rotected ferrets from an unmatched 2007 H1N1 virus challenge.
99 tment protects mice against lethal influenza virus challenge.
100 logous and heterologous H1N1 as well as H5N1 virus challenge.
101 lizing antibody and protective immunity upon virus challenge.
102 uenza virus was protective against influenza virus challenge.
103 erring protection in a stringent influenza A virus challenge.
104 and 50% protection against lethal H5N1 HPAI virus challenge.
105 MVA-NP+M1 vaccination followed by influenza virus challenge.
106 en reported against neutralization-sensitive virus challenges.
107 gainst homologous and heterologous influenza virus challenges.
108 ce from 8 of 9 lethal heterologous influenza virus challenges.
109 ect all TDF treated animals against multiple virus challenges.
110 tely prevented infection, even after mucosal virus challenges.
111 magnitude to protect against pathogenic AIDS virus challenges.
112 ut was ineffective against repeated low-dose virus challenges.
113 eterosubtypic H1N1, H3N2, and H5N1 influenza virus challenges.
114 otection in pigs but only against homologous virus challenges.
115 d heterosubtypic [A/Philippines/2/82 (H3N2)] virus challenges.
116 tion against homo- and heterosubtypic lethal virus challenges.
117 gainst homologous and heterologous influenza virus challenges.
118 heterologous protection against influenza A virus challenges.
119 mmalian and avian species exposed to similar virus challenges.
122 esponses was examined with two separate live-virus challenges administered at 4 and 24 weeks after th
123 yed no protection against the heterosubtypic virus challenge after immunization with PC nanogel-adjuv
127 confer protection against a normally lethal virus challenge, although the CTL appear fully functiona
128 ogical outcomes following virulent influenza virus challenge, although the effect is not clearly corr
129 n host) for the immune responses to a rabies virus challenge, an immunotypic disease model that descr
130 te protection against lethal homologous H5N1 virus challenge and a reduction in virus shedding and di
131 an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory t
132 for lethality prediction following vaccinia virus challenge and for gaining insight into protective
133 severity after heterologous clade 2.2.1 H5N1 virus challenge and increased virus-specific serum and n
135 body 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope
136 enuated SIVmac239Delta3 against heterologous virus challenge and suggest that even live, attenuated v
137 lular immune response to secondary influenza virus challenges and offer an additional parameter to co
138 Gag-Pol, in the control of immunodeficiency virus challenges and the protection of CD4(+) cells.
139 t in the blood and most tissues 3 days after virus challenge, and severe inflammatory lesions were fo
141 DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively
142 enes can confer effective protection against virus challenges, and here we extend these studies to th
145 attern of cytokine mRNA expression upon live virus challenge, anti-IL-4 treated mice had increased CD
146 memory CTL responses which, 4 days following virus challenge, appear similar in magnitude to those in
147 Lymphocyte recruitment to the vagina after virus challenge appeared to involve memory lymphocytes,
151 cytolytic (granzyme B) response to influenza virus challenge, both of which have been shown to correl
152 tive immunity against subsequent intrarectal virus challenge but did not protect against intravenous
153 V) protected ferrets against homologous H3N2 virus challenge but provided minimal to no protection ag
154 ed monkeys were protected against homologous virus challenge, but DEN4-immunized animals became virem
155 ute and chronic lymphocytic choriomeningitis virus challenges, but did not affect the ability to clea
156 correlated to complete protection from live virus challenge by a single vaccination at a dose ten ti
157 D4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and hetero
158 an initial line of defense against secondary virus challenge by limiting early viral replication at t
159 rovide protection from secondary respiratory virus challenge by limiting early viral replication.
160 ombinant gp160 vaccines against the uncloned virus challenge by the intrarectal route compared with t
161 t bNAb-mediated protection against a mucosal virus challenge can involve clearance of infectious viru
163 anisms involved in mediating protection from virus challenge compared to those that control an establ
164 ved protection against Listeria and vaccinia virus challenges compared with the Armstrong boost.
165 ction in lung tissue following H5N1 and 1918-virus challenge, compared with wild-type control mice.
169 body b12 serum concentrations at the time of virus challenge corresponded to approximately 400 (25 mg
170 ) or IFNGR1(-/-) mice followed by intranasal virus challenge demonstrated both that IFN-gamma produce
171 against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 n
172 the older monkeys required a 150-fold-lower virus challenge dose than the neonates (P=3.3 x 10(-5)).
173 escribed that uses an empirically determined virus challenge dose, a single dilution of antiserum, an
174 ed in the lungs of IFN-gamma(-/-) mice after virus challenge, either Th1- or Th2-biased responses cou
175 ined TLR/CD40 immunization, because vaccinia virus challenge elicited primarily OX40L-dependent CD4 r
176 , but FcgammaRIIB blockade during homologous virus challenge enhanced the secondary CD8 T cell respon
177 cells may be present at the time and site of virus challenge, establishing a high level of CD8(+) T c
181 s, a group of eight infectious salmon anemia virus-challenged fish were included to observe T cell re
185 and protected animals from lethal influenza virus challenge, highlighting the potential clinical use
186 of DBA/2 mice against lethal wild-type pH1N1 virus challenge; however, at a lower dose (1 mg/kg), HF5
187 were not protected against lethal monkeypox virus challenge if their CD4(+) cell count was <300 cell
189 T-cell responses and protected mice against virus challenge in an infectious disease model and provi
192 mmune responses against homologous secondary virus challenge in both asthmatic and nonasthmatic mice,
194 elicited sterilizing immunity against Lassa virus challenge in guinea pigs and marmosets and virus-s
196 erred complete protection against homologous virus challenge in mice, and the serum antibodies direct
197 rotection against a lethal dose of influenza virus challenge in mice, demonstrating the potential of
202 nd provided partial protection (55%) against virus challenge in outbred New Zealand White rabbits.
203 8+ T cells, which protected against a lethal virus challenge in the absence of other mechanisms, incl
204 an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary
207 tested by passive antibody transfer and oral virus challenge in the rhesus macaque model for EBV infe
216 ighly protective against homologous virulent virus challenges in type I interferon receptor (IFNAR)-k
217 ot result in enhanced disease following live-virus challenge, in contrast to the histopathology seen
218 ential perturbation of TCR V betas following virus challenge, including increases in cells expressing
219 tal YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated
220 upregulated in the vaginal epithelium after virus challenge, indicating that virus-specific memory T
222 a high level of protection against wild-type virus challenge infection compared to the strain with th
223 icant protection against a heterologous H1N1 virus challenge infection in the upper respiratory tract
224 rotective activities against a lethal rabies virus challenge infection, with SPBN-Cyto c(+) revealing
227 nst homologous and heterologous wild-type H7 virus challenge, making it suitable for use in protectin
228 tor cells involved in the immune response to virus challenge may be a more important determinant of d
229 cific CD8(+) T-lymphocyte response following virus challenge may exert suppressive effects on primed
233 ically, conferring enhanced survival of H5N1 virus-challenged mice when treatment was begun 72 h afte
235 able animal model for dengue, a human dengue virus challenge model (ie, a controlled live dengue viru
243 d ST-246 in prairie dogs against a monkeypox virus challenge of 65 times the 50% lethal dose (LD(50))
244 research and development, a single high-dose virus challenge of animals is used to evaluate vaccine e
246 g a pathogenic simian-human immunodeficiency virus challenge of rhesus monkeys vaccinated with plasmi
247 acy against homologous and heterologous live virus challenge of the resulting VLPs were tested after
250 ection were protected against herpes simplex virus challenge only if the gC antibodies blocked C3b bi
252 prophylaxis (beginning seven days before the virus challenge) or treatment (beginning at the time of
253 onstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rP
254 D and SIV(mac251) in subsequent intravaginal virus challenges (P = 0.63), despite the potent antivira
255 y the absence of TNF-alpha induction in H5N1 virus-challenged pigs, coincided with greater cell death
256 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-ce
257 ce tolerized to alphaMYHC are protected from virus challenge proving pathogenesis depends upon autoim
258 ponse to HA and confer immunity to influenza virus challenge relative to the commercial vaccines Fluz
259 delay in transferring NAbs until 24 h after virus challenge resulted in infection in two of two monk
262 Results of both natural history studies and virus challenge studies with macaques indicate that resp
264 n a large scale serially sampled respiratory virus challenge study we quantify the diagnostic advanta
265 prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of th
266 ct mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-speci
269 rbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a lo
270 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-dep
271 t is T cells already resident at the site of virus challenge that offer superior immune protection.
273 longer the delay between MVC application and virus challenge, the less protection (half life of appro
274 irus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that con
276 s directed protective responses to influenza virus challenge through intrinsic effector mechanisms, r
277 memory responses after a secondary influenza virus challenge, thus indicting the nonredundant functio
280 allenged with homologous and heterologous H5 viruses, challenge virus replication was reduced in the
281 v) gene was analyzed in relation to route of virus challenge, virus load, and neutralizing antibody (
282 al protection against heterologous influenza virus challenge was achieved following either IM/IM or I
283 a-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with
284 unized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA
286 sponses and protective immunity to influenza virus challenges was evaluated using a DNA vaccine encod
287 r understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis
288 ibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques wit
289 ated monkeys (DNA or HDCV) survived a rabies virus challenge, whereas monkeys vaccinated with only th
291 nce the immune response to primary influenza virus challenge while preventing potentially damaging ch
293 hamsters remained active following wild-type virus challenge, while mock-immunized hamsters displayed
294 ted with reduced shedding of a pandemic H1N1 virus challenge, while vaccination with MVA encoding nuc
296 and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveol
297 a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortalit
WebLSDに未収録の専門用語(用法)は "新規対訳" から投稿できます。